Сделай Сам Свою Работу на 5

Обладают ли дельфины речью?





Джон Лилли и его единомышленники пришли к гипотезе, что по умственному развитию дельфины очень близки к человеку и в будущем смогут вести с людьми осмысленный разговор.
Джон Лилли намеревался от опытов электрической стимуляции мозга дельфинов перейти ко второй стадии — к «вокальной тренировке», т. е. к отработке у афалины четкого произношения слов на английском языке. Затем в третьей стадии — добиваться, чтобы животные называли словами окружающие предметы и, наконец, в четвертой стадии обучить подопытных дельфинов разговору с человеком. Лилли достиг только первой стадии и остановился на второй. Он объясняет трудность словесного общения человека и дельфина тем, что оба они не понимают друг друга, поскольку первый слышит лишь небольшую часть сигналов второго: ведь диапазон восприятия частот дельфинов в 10 раз больше, чем у людей. Кроме того, звук, переходя из воды в воздух, затухает.
Чем же аргументируется «языковая гипотеза», каковы ее доводы?
Во-первых, тем, что мозг дельфинов очень крупный. По форме, размеру и количеству извилин он напоминает мозг человека. Вес мозга и число нервных клеток в коре больших полушарий афалины даже выше, чем у людей. С этими качествами мозга связана и легкая обучаемость и понятливость дельфинов при их дрессировке.
Во-вторых, существует большое разнообразие акустических сигналов и сложность сигнализации дельфинов.
В-третьих, звукозаписью доказаны индивидуальные различия в голосах дельфинов, по которым их можно распознавать персонально (впервые это заметили в Сент-Огастинском океанариуме Франк Эсапян и в Калифорнийском — Давид и Мельба Колдуэллы).
В-четвертых, дельфин способен воспроизводить слова человека, причем сонограммы записанных слов, произнесенных тем и другим, сходны.
В-пятых, у некоторых жителей горных областей Турции, Пиринейского хребта, Канарских островов существует свистовой язык, внешне очень напоминающий свистовые сигналы дельфинов.
В-шестых, дельфины, изолированные в отдельном бассейне, проявляют интерес к голосам своих сородичей, находящихся в другом бассейне, если те и другие связаны электронной связью. При этом дельфины обмениваются не только свистами, но и щелканьями. Ученые США Томас Лэнг и X. Смит наблюдали поведение дельфинов, из которых одиночка находился в одном танке, а три других во втором. Животные обменивались свистами в те периоды, когда между бассейнами работала двусторонняя электроакустическая связь. Когда записанные сигналы одного зверя воспроизводились другому, тот остро реагировал на эти звуки. Подобное наблюдение провели также исследователи В. Эванс и Д. Дреер в Калифорнийском океанариуме: одиночная афалина приходила в сильное возбуждение, как только в танк передавали сигналы группы сородичей. В ответ на подачу звука афалиной полосатый дельфин (из другого рода!) тоже приходил в состояние возбуждения и долго (до 2 минут) плавал под водой, явно охотясь за звуком возле гидрофона; он успокаивался, если передача сигналов из другого бассейна прекращалась.
Однако все приведенные доводы не доказывают ни наличия языка, ни абстрактного мышления дельфина, ни их уникального положения в мире животных. В действительности дельфины, как и всякое другое животное, не обладают отвлеченным мышлением и не имеют настоящего языка, близкого к человеческому. Это — главное.
Каждому приведенному выше доводу может быть противопоставлен контрдовод. Большой размер мозга с огромным числом нейронов и множество извилин на нем у дельфинов не обязательно могли развиться в связи с речью. Вес мозга относительно веса тела сам по себе еще ничего не говорит. У человека мозг составляет 1/34 веса тела. Но есть обезьяны в Южной Америке, относительный вес мозга которых выше, чем у человека (у капуцина — 1/18, а у черной коаты — до 1/15 веса тела). Однако никто не считает этих низкоорганизованных широконосых обезьян «умнее» человека.
Легкость обучения при дрессировке свойственна не только дельфинам, но и собакам, обезьянам, лошадям, морским львам. Иногда дельфины действительно выполняют требуемое от них простое действие после одного-двух показов. Но есть номера, на отработку которых и у афалин требуются месяцы, причем некоторых из них приходится отстранять за неспособность освоить номер.
Что же касается многообразия акустических сигналов дельфинов, то оно оказывается не так велико по сравнению с другими животными и даже уступает некоторым четвероногим. Немецкие ученые А. Грауфогл и Г. Темброк установили для свиньи 23, а для лисицы — 36 сигналов (!). Не менее 40 типов звуков издают гамадрилы, еще больше — человекообразные обезьяны.
Разница в «словарном» фонде дельфина и человека очень велика. Подсчитано, что ребенок к концу второго года обладает запасом в 300 слов, к концу третьего — в 500, к дошкольному возрасту — в 3 — 5 тысяч слов. Молодой же дельфин-афалина, как установили Д. Дреер и В. Эванс, имеет лишь 6 свистовых сигналов, а взрослый — 20 — 30. Слишком мало, чтобы вести разговор с разумным существом!
Индивидуальные оттенки в звуковой сигнализации дельфинов тоже ничего не доказывают: ведь это свойство почти всякого животного, обладающего голосом. Хозяин может определить свою собаку из многих десятков лающих животных только по одному лаю1.







1 Свисты — наиболее коммуникативные сигналы — оказались крайне стереотипными для одной и той же особи, хотя имели индивидуальные оттенки у разных особей. Это доказали Мельба и Давид Колдуэллы в 1968 году, изучив более 2400 свистов дельфинов-белобочек. По таким индивидуальным свистам в стайке дельфины, видимо, узнают каждого сородича персонально.

Дельфины действительно могут копировать слова, услышанные от экспериментатора, но бездоказательно утверждать, что они вкладывают в воспроизведенные «слова» какой-то смысл, абстрактные понятия. Подражание словам человека у дельфинов и попугаев — явление одного и того же порядка. Еще ни разу даже самые «умные» дельфины не показали понимания того, что они говорят.
По своей способности к звукоподражанию дельфины не занимают исключительного положения в животном мире. Отлично копируют слова человека некоторые птицы (скворцы, попугаи, вороны, сороки, сойки, майны). Щеткоязычный попугай лори по кличке Куконя, живущий у ленинградца А. М. Батуева, «знает» свыше сотни слов и десятки фраз. А это много больше, чем у знаменитого дельфина Эльвара. Слово «мама» произносят дрессированные обезьяны, а у Владимира Дурова это же делала собака.

Рис. 53.

Схема опыта Бастиана с афалинами.

Сонограммы слов, произнесенных человеком и попугаем, не менее сходны, чем сонограммы слов экспериментатора и дельфина.
Со свистом дельфина иногда сравнивают свистовой язык жителей некоторых деревушек в Пиринеях и на Канарских островах. Но нельзя забывать, что свистовой язык человека — это те же закодированные слова, сигналы сигналов. Французский физиолог Рене Бюснель в 1966 году специально изучал язык этих горных народов и пришел к выводу, что по физическим свойствам возможна аналогия между дельфиновыми свистами и свистовым языком человека, но она не доказывает существования языка у дельфинов. Проблема синтаксиса применима только к языку человека — разговорному или свистовому. Методы, анализирующие свистовой язык человека, не могут быть применимы к акустическим сигналам животных, в том числе и к свистам дельфинов. Можно думать, что подражание человеческому голосу афалина выполнит успешнее обезьяны шимпанзе, и, вероятно, дельфина можно легче обучить человеческому свисту, чем обычному голосу человека.
Интерес к голосам сородичей и обмен сигналами существует не только у дельфинов, но и у многих животных, например, в семьях обезьян, в стайках синичек и т. д. Спровоцировать ответ на искусственно подаваемые звуковые сигналы удается у большого количества видов зверей и птиц. На этом основана, например, охота на рябчика и уток, которые идут на манок, имитирующий их голос, охота на оленей с рогом и т. д.
Предположение, что дельфины располагают элементарными единицами звукового кода типа фонем человеческой речи и способны к комбинаторике из целого ряда сигналов, не доказано.
Более правдоподобна концепция, что «язык» дельфинов представляет собой лишь систему простых сигналов, удовлетворяющих все их несложные запросы жизни в довольно сложной для млекопитающего водной среде обитания.
Язык, речь, слово свойственны только людям. Даже самую сложную сигнализацию у животных нельзя отождествлять с речью человека. Слову соответствуют определенные понятия, которые помогают нашим представлениям об окружающем, в том числе и о том, что в нашей жизни никогда не встречалось, чего не приходилось видеть и слышать. Животное не может пользоваться словом сознательно как отвлеченным понятием, как сигналом сигналов. Оно может скопировать слово как звук за поощрение, что и делают живущие в неволе попугаи и другие птицы. Точно так поступают и дельфины. Они искусно пользуются сигналами страха, боли, бедствия, спаривания, разыскивания пищи, устрашения, а когда воспроизводят слова человека, то выступают лишь в роли попугая или бессмысленного говоруна. Еще никто не мог найти у животных (в том числе и у дельфинов) язык, пригодный для передачи абстрактных понятий1.

1 Тип чувственного мышления имеет в своей основе ощущение, восприятие и представление, а тип логического мышления — понятие, суждение и умозаключение. Первый тип свойствен не только человеку, но и животным.

У животных нет отвлеченного понятийного мышления. Их мышление конкретно, они реагируют лишь на непосредственно действующие раздражители, на многие сигналы первой сигнальной системы и в лучшем случае проявляют только зачатки рассудочной деятельности.
У человека есть абстрактное (отвлеченное) мышление, вторая сигнальная система. Речь, слово, письмо вызывают у людей опосредствованную реакцию, иногда такую же сильную, как она вызвана непосредственным раздражителем.
Отвлеченное мышление у человека возникло и достигло совершенства в коллективе в связи с применением орудий труда. Этот социально-исторический процесс обеспечил превосходство сознательного мышления и языка человека над зачатками мышления и сигнализации животных. Деятельность человека подчиняет себе природу, а дельфины, как и любое другое животное, сами подчиняются природе, приспосабливаясь к ней.
И сколько бы ни пытались опытные дрессировщики обогатить жизненный опыт афалины, формируя у нее сложное поведение, психофизиологический рубеж между животными и человеком останется непреодолимым.
Ныне часто ссылаются на опыты калифорнийского психолога Джарвиса Бастиана, который в морской лаборатории военно-морского флота США в Пойнт-Магу якобы экспериментально доказал существование языка у афалин. Суть эксперимента была в том, что афалину-самца Бэс обучили подражать действиям самки Дорис — нажимать на один, другой или третий контакты с сигнальными лампами. Когда обоих животных в бассейне разъединяли непрозрачной перегородкой, чем исключали зрительный анализатор, то подражание в нажимании на тот или иной контакт было точным (рис. 53). Когда же перегородку делали еще и звуконепроницаемой (исключали также слуховой анализатор), подражание стало ошибочным. Но стоило в перегородке сделать небольшое отверстие, через которое проходил звук, как подражание вновь стало правильным. Комментаторы опытов Д. Бастиана объяснили точность подражания тем, что Дорис будто бы передавала информацию для Бэс с помощью языковых сигналов. Однако так толковать свой опыт не решился даже сам Бастиан, так как афалина Бэс могла следить за местоположением и действиями Дорис с помощью своего гидролокатора. Кроме того, сравнение свистов, издаваемых афалиной Дорис во время нажимания на разные контакты, не показало различий, которые должны были бы быть при языковой информации.
Таким образом, доказательств о том, что дельфины пользуются языком, словесной информацией, до сих пор нет. За поведением дельфина не стоят мыслительные процессы, аналогичные нашим.
Но если у дельфинов нет языка и понятийного мышления, то чем можно объяснить развитие их огромного головного мозга? Причины и обстоятельства для этого у них были совсем другими, чем у человека: мозг дельфинов обслуживает потребности жизни в водной среде и определяет всю тонкость приспособительной деятельности в этих условиях.
Ведущую роль в развитии крупного мозга дельфинов сыграла, видимо, эхолокация как важнейший способ ориентации зубатых китов в океане и главный путь получения информации об окружающем. Для переработки поступающего множества эхо-сигналов потребовался высокоразвитый головной мозг. Не случайно в мозге дельфинов обнаруживаются некоторые преимущества перед мозгом человека именно в области слуховой системы1.

1 В. П. Зворыкин нашел черты превосходства в слуховой подкорке, развитой сильнее, чем у людей: оказалось, например, что верхняя олива мозга по объему у дельфина в 150 раз больше, чем у человека. Однако по сложности и тонкости организации слуховая кора у человека стоит много выше соответствующих участков коры афалины.

Благоприятствовали сильному развитию мозга дельфинов также: большая скорость их плавания и быстрая смена внешних условий при нырянии (и то и другое устраняло сенсорную недостаточность); выдвижение на первое место из органов чувств слухового анализатора, воспринимающего в очень широком диапазоне акустические колебания (от десятков герц до 170 кгц), это обстоятельство расширяло поток поступающей информации; высокие частоты, на которых работает гидролокатор дельфинов, несут гораздо большую информацию; отличная звукопроводимость водной среды и высокая (в 4,5 раза большая, чем в воздухе) скорость распространения звука в воде, вызывавшая необходимость мгновенного ответа со стороны животного; стадный и семейный образ жизни, при котором возникали структурные группировки популяции, иерархическое поведение, долговременность и прочность семейных связей; совместная охота за рыбой. Невозможность использования в воде жестов и мимики для связи между дельфинами компенсировалась звуковыми сигналами. Продолжительное совместное пребывание детенышей и родителей способствовало обогащению индивидуальным опытом молодых особей.
Из всего сказанного вытекает, что попытки переделать на человеческий лад природу дельфина и научить его сознательно пользоваться человеческим языком должны быть признаны беспочвенными: они игнорируют роль эволюции, генетический код и силу наследственной информации.
Общение дельфинов с человеком в неволе ликвидирует их умственную вялость, ставит их в новые необычные ситуации, тренирует их мозг, и порой от этого получаются удивительные реакции, которые ошибочно принимаются за результат абстрактного мышления.
Насколько в действительности разумно поведение дельфинов? Отличаются ли они в этом от других высокоорганизованных животных-интеллектуалов — обезьян?

Судьба анализаторов.

В связи с глубоким погружением китообразных сразу же возникает вопрос, как они ориентируются и ловят добычу в малопрозрачной водной толще, а иногда и в царстве вечной тьмы, ночью и днем, при далеких миграциях, как определяют путь и точно выходят к цели, отдаленной на тысячи километров? Каковы механизмы этой изумительной подводной ориентации и навигации?
Каждому ясно, что в этом им помогает высокоразвитая нервная система. Деятельность мозга невозможна без непрерывного притока информации из окружающей внешней и внутренней среды. Этот приток поступает в организм через органы чувств (анализаторы), которые справедливо называют «окнами в мир». Без органов чувств, доставляющих информацию о сезонных и суточных изменениях окружающей обстановки и о многих других внешних раздражителях, не было бы у китообразных ни великолепной ориентировки в пространстве, ни правильных миграций, ни случаев возвращения в одни и те же бухты после грандиозных странствий.
В новой среде понадобилось коренное переустройство всех анализаторов, полученных в наследство от наземных предков. Одни анализаторы приобретали первостепенное значение, другие — второстепенное, третьи — исчезали.
Редукции у китообразных подверглось обоняние — ощущение запахов посредством органа, расположенного в носу. Сама по себе жизнь в воде еще не ведет к исчезновению органа обоняния. Вспомним хотя бы акул, которые идут на запах крови с далеких расстояний, и у них сильно развиты обонятельные доли переднего мозга. У рыб орган обоняния все время развивался и приспосабливался к улавливанию запахов в воде, а у наземных предков китообразных запахи проникали через ноздри вместе с вдыхаемым атмосферным воздухом. С переходом в воду потомки этих предков утратили обоняние, так как молекулы пахучих веществ могли проникать в носовой канал лишь в момент очень короткого вдоха, после длительной дыхательной паузы, проводимой под водой с закрытыми ноздрями. Воздух над океаном был чистым, и запахи в нем потеряли всякое значение для живущих в воде китов. Поэтому обонятельные луковицы мозга, обонятельные нервы и обонятельный эпителий в решетчатораковинном отделе черепа либо полностью исчезли (зубатые киты), либо сохранились лишь в зачаточном виде, притом лучше у зародышей (усатые киты). Растворенные же в воде химические вещества, в том числе и запахи пищи, кала и мочи сородичей, стали раздражителями другого органа чувств — вкуса.
Вкусу китов считали слабо развитым или даже исчезнувшим на основании тонкого вкусового нерва и находок в их желудках несъедобных предметов (булыжники, галька, куски дерева и многое другое). Но камни, по-видимому, заглатываются для перетирания пищи и потому не могут свидетельствовать о слабом развитии вкуса. Другие инородные предметы заглатываются случайно при процеживании цедильным аппаратом всего, что попадает в сферу фильтрации, когда невозможно отделять съедобное от несъедобного. Ученые, например Э. И. Черный и А. В. Яблоков, полагают, что китообразные способны тонко различать разную соленость воды и обнаруживать своих сородичей по их «химическим следам» — по моче и фекалиям. Опресненные устья рек посещают многие морские свиньи, белухи, дельфины-соталии, орцеллы, малые полосатики, а серые киты находят полупресные лагуны, чтобы очищать кожу от вшей, погибающих от опресненной воды.
Далеко не все китообразные могут долго пребывать, в пресной воде. Некоторые океанские дельфины тяжело переносят недостаточную соленость воды: они заболевают прыщами, рожистыми воспалениями, грибковыми поражениями кожи и погибают, как это было с косаткой Моби-Долл. Калифорнийские зоологи Сибеналер, Мельба и Давид Колдуэллы описали, как в Мексиканском заливе афалины по нескольку недель остаются в опресненных заливчиках, кормясь сельдевыми рыбами, которые здесь мечут икру. В это время на коже дельфинов выступает сыпь. Соленость Черного моря вдвое меньше, чем океана. Не этим ли объясняется отсутствие здесь китов и некоторых видов дельфинов, встречающихся в Средиземном море? Лишь три вида дельфинов смогли приспособиться к жизни в Черном море, обособившись в самостоятельные подвиды: дельфин-белобочка, афалина и морская свинья. Первый заселил зону открытого моря, вторая и третья — прибрежную зону, причем морская свинья заняла также мелководное и наиболее опресненное Азовское море (11‰). Черноморские дельфины, приспособившись к условиям пониженной солености (18‰), вероятно, не выходят через проливы и не общаются со средиземноморскими популяциями, а средиземноморские китообразные, привыкшие к океанской солености (35‰), не заходят в Черное море.
Физиолог США Джон Лилли описал случай, как одна афалина, находясь в бассейне его лаборатории на Вирджинских островах, пришла в сильнейшее возбуждение, когда вблизи проплывала стайка сородичей. Ученый полагает, что дельфин узнал о близости стайки по «вкусу» (химическому составу) той воды, которая по шлюзу вливалась из моря в бассейн. Вкусовые ощущения, по-видимому, воспринимаются валиковидными сосочками, расположенными по краю языка. Вообще орган вкуса у китообразных изучен еще очень слабо. За последние годы в этой области сделаны интересные находки.
Советский морфолог А. В. Яблоков в 1956 году нашел у корня языка белухи, а потом и у других видов зубатых китов несколько ямок, покрытых призматическим эпителием. Этот исследователь связал функцию ямок с хеморецепцией, специализированным восприятием вкусовых ощущений (лишь недавно в этих ямках морфолог Л. И. Суховская у дельфина-белобочки обнаружила и вкусовые луковицы). Московские морфологи В. Е. Соколов и О. В. Волкова также считают, что ямки на языке дельфинов несут сенсорно-вкусовую функцию, а обильные здесь слизистые железы выносят из организма китообразных соли, попадающие в их пищеварительный тракт вместе с морской водой. Сотрудник Московского университета В. Б. Кузнецов экспериментально показал разную реакцию на разные вещества в растворе, которым промывали ротовую полость подопытных дельфинов-белобочек и морских свиней. Ответственными за эту хеморецепцию считают упомянутые выше ямки на языке дельфинов.
Осязание китообразных, как показывают наблюдения над живыми особями, развито достаточно хорошо. Кожа играет важнейшую роль в восприятии раздражений, поступающих из внешнего мира. Она не ороговевает сверху (роговой слой быстро слущивается), и это способствует сохранению высокой кожной чувствительности. Кожные рецепторы (тактильные, температурные, болевые) сигнализируют животному о прикосновениях к телу, о температуре среды, о болевых ощущениях, о меняющемся давлении воды. Водная среда с ее сравнительно стабильными окружающими условиями как будто мало способствует развитию высокой кожной чувствительности китообразных. Однако данные показывают другое. Киевская группа исследователей (проф. Г. Б. Агарков с сотрудниками) нашла в коже дельфинов (особенно на голове) богатые пучки нервных волокон с их окончаниями, сложные клубочковые рецепторы и инкапсулированные чувствительные аппараты типа колб Краузе и фатер-пачиниевых телец. Чувствительные окончания этих нервных структур осуществляют, по мнению ученых, трофо-, баро- и механорецепцию и служат рецепторами-датчиками, которые выполняют прямую и обратную связь с мозгом. Возможно, что очень высокие сосочки дермы, помимо выполнения своей демпферной функции, предотвращающей развитие вихревых потоков, играют также роль тактильных органов.
Редукция волосяного покрова, потовых и сальных желез не притупила у китообразных кожной чувствительности. Смена среды, ощущаемая при их выныривании, служит им сигналом для открывания дыхала и дыхательного акта (поэтому к лобному выступу дельфинов, выставляющемуся из воды первым, подходит толстый чувствующий нерв). В ответ на легкое прикосновение к коже дельфины открывают и закрывают глаза. Хорошо иннервированная кожа китообразных способна управлять пограничным слоем воды с помощью тонких двигательных механизмов, тесно связанных с тактильной чувствительностью наружного покрова. Двигательные реакции кожи способствуют сохранению обтекаемых потоков вокруг тела быстро передвигающихся дельфинов. Высокая тактильная чувствительность их кожи смогла развиться при жизни в условиях относительной невесомости погруженного в воду животного. Присутствие на морде усатых китов десятков волосков, луковицы которых богато оплетены нервными окончаниями, показывает высокую кожную чувствительность в этой части тела. Такие волоски — своеобразные вибриссы: при прикосновении к ним они действуют, видимо, как рычаги, увеличивающие силу внешнего раздражения на нервные окончания. Усатые киты, наталкиваясь в воде на крошечных рачков, легко определяют густоту скопления корма при любом освещении и часто кормятся ночью.
Зубатые киты, питающиеся одиночной и сравнительно крупной добычей, в осязательных волосках не нуждаются и утрачивают их еще до или вскоре после рождения. На месте выпадения волосков остаются ямки специфического строения. Иннервация их оказалась настолько богатой, что английские ученые Э. Палмер и Г. Уэдделл рассматривают эти ямки как спидометры — чувствительные приборы дельфинов для измерения их скорости движения и восприятия низкочастотных колебаний. Лишь речные дельфины с недостаточно развитым зрением, живущие в мутной воде и роющиеся в илистом дне, сохраняют волоски на клюве в течение всей жизни.
Китообразным во время миграций и при нырянии приходится испытывать то тепло, то холод, и можно полагать, что они тонко ощущают температуру среды, о чем косвенно свидетельствуют их превосходная регуляция тепла и тот факт, что многие киты избегают тропических вод.
Кожу китообразных называют волшебной, так как с кожным раздражением связано не только их осязание, но и исключительная быстроходность, теплорегуляция, проявление инстинкта сохранения вида, поведение во время сна и преследования судов, поощрения во время дрессировки и многое другое.
Очень мало известно о проприоцептивной чувствительности китообразных (раздражение нервных окончаний при сокращении, растягивании скелетных мышц). Однако то совершенство, с которым они двигаются, позволяет думать, что у них хорошо развит проприоцептивный аппарат.
Зрительный анализатор — важнейший среди анализаторов у дневных наземных млекопитающих. С его помощью человек, например, получает 80 — 85% информации из внешней среды. Зрением воспринимается окружающий мир — величина, форма, цвет, яркость, освещение и отдаленность предметов, от которых отраженный свет поступает в глаз. Море, как малопрозрачная среда, не благоприятствует сильному развитию зрения водных млекопитающих. Свет здесь быстро поглощается и уже на глубине 500 м практически наступает полная темнота.
Глаз крупных китов весит около 1 кг, а у мелких дельфинов достигает величины глаза собаки. Глазное яблоко, спереди уплощенное, напоминает форму несколько сдавленного шара. Щель глаза закрывается веками, лишенными ресничек. Слезные железы отсутствуют, а поверхность глаза смазывается прозрачным и густым белковослизистым выделением гардеровых желез. Оно предохраняет глаз от вредного действия морской воды и не мешает прохождению лучей. Белковая оболочка (склера) — толстая и плотная. Родятся китообразные с открытыми глазами. В воде они видят лишь на коротком расстоянии. Раньше думали, что на воздухе они близоруки, так как их хрусталик шаровидный, а ресничные мышцы исчезли. Однако у них оказалось довольно острое зрение и хорошо развитый зрительный нерв. В 1 мм2 сетчатки обнаружено у морской свиньи 200 000, у белухи — 150000, у бутылконоса — 143000 и у финвала — 62000 палочек. Колбочки в сетчатке китообразных либо отсутствуют, либо крайне малочисленны. По этой причине считают, что китообразные не различают цветов.
Благодаря особой отражательной оболочке, содержащей большое количество кристалликов гуанина, глаза дельфинов могут отражать свет подобно зеркалу. Поэтому ночью глаза у дельфинов светятся, как у кошек.
Предполагают, что аккомодация глаза китообразных достигается за счет «игры» радужины, которая придает зрачку форму то узкой щели (при ярком свете — в воздухе), то круглого отверстия (при тусклом освещении — в воде). В первом случае свет, пропускаемый через узкую, но высокую щель зрачка, проходит словно через двояковогнутые очки, так как кривизна и толщина роговицы бывает наименьшей в центре и наибольшей у краев. Во втором случае свет, пропускаемый через круглое отверстие радужины, проходит через центральную (тонкую) часть роговицы и минует ее толстую часть. Кроме того, роговица способна усиливать свою кривизну под действием глазных мышц. Все это обеспечивает разную преломляющую способность глаза, и китообразные могут хорошо видеть как в воде, так и на воздухе. Косатки, кашалоты, полосатики и серые киты осматриваются, поднимая голову над водой; дельфины в неволе следят за бросаемой рыбой и кидаются туда, куда она должна упасть, а иногда схватывают ее даже в воздухе. Они точно хватают рыбу из рук дрессировщика с высоты 5 м. Дельфины свободно поворачивают глаз и мигают, если перед ними мелькает какой-либо мелкий предмет. Зрение китообразных преимущественно монокулярное и в меньшей мере стереоскопическое. Поскольку глаза их расположены по бокам вытянутой головы, далеко от переднего кончика морды, кашалоты, многие киты и часть дельфинов не могут видеть предметов впереди своего рыла. Лишь у дельфинов с маленькой мордой поле зрения левого глаза может частично перекрываться полем зрения правого глаза, и в этом случае их зрение будет частично стереоскопическим. Многие дельфины и даже косатки при разглядывании предметов в бассейне ложатся на бок и исследуют их при помощи то одного, то другого глаза.
Капитан-китобой начала XIX века Вильям Скорсби описал, как гренландские киты, проходя под килем его корабля, поворачивались на бок, чтобы рассмотреть, что лежит над ними.
Ученые США Уинтроп Келлог и Чарлз Раис в небольшом бассейне во Флориде испытывали на восьмилетней ручной афалине Пэдди ее способность к распознаванию различных фигур с помощью зрения. Фигуры, выставляемые на мишени, состояли из светящихся кружков, треугольников, квадратиков, крестиков, ромбиков и т. д. Когда дельфин обучился распознавать эти фигуры, ученые комбинировали их в пары и показывали ему под водой и на воздухе. В опытах под водой из 25 пар фигур-раздражителей дельфин успешно различал 21 пару (84%). Результат был отрицательный, если фигуры помещались на воздухе, а рассматривались из-под воды. Распознаванию мешала рябь на поверхности воды, искажавшая изображение фигур при разглядывании их из-под воды. Острота зрения у Пэдди оказалась наилучшей на расстоянии 1,8 м от мишени.
Насколько велика роль зрения у дельфинов при лове добычи и распознавании препятствий?
Биологи француз Р. Бюснель, датчанин А. Дзидзик и норвежец С. Андерсон провели серию опытов над морской свиньей в бассейне, имевшем диаметр 54 м. В бассейн погружали вертикально в шахматном порядке 30 сетей из проволоки толщиной от 0,2 до 4 мм. Сюда выпускали морскую свинью и за 20 минут свободного плавания подсчитывали, сколько раз она натыкалась на сети и сколько раз их обходила. В одной серии опытов она плавала с открытыми глазами, а в другой — с глазами, закрытыми резиновыми колпачками. Подсчет показал: чем тоньше была сеть, тем больше было сталкиваний. Сети из проволоки диаметром 0,2 мм «зрячая» морская свинья избегала в 77% случаев, а «ослепленная» — в 46%. Сети из нейлоновой лески толщиной 1,5 мм «зрячее» животное избегало в 95%, а «ослепленное» — в 72%. Ясно, что зрение помогает избегать препятствий «зрячим» особям. Но с помощью чего делают то же самое «ослепленные» дельфины?
Хорошо известно, что некоторые и зубатые и усатые киты кормятся по ночам, когда зрение не помогает. У речного дельфина, живущего в мутной реке Ганге, зрение редуцировалось из-за потери хрусталика. Сильно ослаблено оно и у китайского речного дельфина-липотес. Во всех этих случаях китообразные при лове добычи обходятся без помощи глаз.
Какой же орган в таком случае заменяет им зрение? Натуралисты уже давно заметили, что если среда не позволяет млекопитающим использовать зрение, оно компенсируется другим органом чувства. Таковым у китообразных оказался слух. Мир дельфинов и китов — это мир звуков. Именно слух оказался в их жизни самым важным анализатором, исключительное совершенство которого выдвинуло китообразных по уровню развития на первое место среди животных Мирового океана.
Море оказалось исключительно благоприятной средой для развития тонкого слуха у водных млекопитающих: ведь звуки в воде распространяются почти в 5 раз быстрее, чем в воздухе, и на гораздо большее расстояние. Однако одного чуткого слуха оказалось недостаточно, и у зубатых китообразных развился очень совершенный гидролокатор, позволяющий ориентироваться в окружающей среде при помощи звуковых лучей. Для исследования водного пространства звуковыми лучами китообразные вначале издают звуки, а потом улавливают эхо посланных звуковых волн от окрестных предметов. По такому эху китообразные отлично ориентируются в воде независимо от освещенности и глубины и получают весьма полную информацию об окружающем — о пище, сородичах, близости берега и о многом другом. Ориентация по отраженным звукам и называется эхолокацией. Эхолокация — одно из средств обнаружения препятствия и определения его положения в пространстве с помощью посланного и отраженного звукового сигнала. Этим средством, как теперь установлено, владеют многие млекопитающие, а также птицы, например, стрижи-саланганы,- кроншнепы, живущие в пещерах американские козодои. Эхолокацией пользуются некоторые ластоногие (тюлени, например), но лучше всего она развита у рукокрылых (летучие мыши) и зубатых китов.

Рис. 35.

Схема расположения воздушных мешков у обыкновенного дельфина: а, б — продольный разрез головы; в — проекция сверху: 1 — щель дыхала; 2 — верхний мешок; 3 — его отверстие в носовой канал; 4 — мускульная пробка, запирающая носовой канал; 5 — трубчатый мешок; б — соединительный проход с расширением; 7 — нижний (надмежчелюстной) мешок; 8 — его отверстие в носовой канал; 9 — кости черепа; 10 — носовой канал. По Е. В. Романенко, А. Г. Томилину и Б. А. Артеменко.

В гидролокаторе китообразных имеются как бы два тесно связанных устройства: передающий механизм и приемный механизм. Передающее устройство включает три пары воздушных мешков, тесно связанных с носовым каналом, гортань, лобно-носовую подушку или «жировую линзу» и рефлектор, образованный вогнутой передней поверхностью черепа. Приемное устройство, к которому возвращаются отраженные звуки, включает органы слуха, нижнюю челюсть и, возможно, механорецепторы головы.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.