Сделай Сам Свою Работу на 5

Способы очистки поликристаллического кремния





Поликристаллический кремний — материал, состоящий из мелких кристаллитов кремния. Занимает промежуточное положение между аморфным кремнием, в котором отсутствует дальний порядок, и монокристаллическим кремнием.

Атомная структура полупроводниковых материалов и в частности кремния может различаться очень сильно от строго упорядоченного расположения атомов в монокристаллах до разупорядоченного аморфного состояния. Поликристаллический кремний в этом ряду занимает промежуточное место. В полупроводниковом кремнии существует внутрифазная граница, под которыми понимают области контакта, различно ориентированных кристаллических решёток одной и той же фазы. Если углы разориентации относительно не велики (менее ), то границы называется малоугловыми или субграницами, а разделяемые ими области субзёрнами. Малоугловые границы формируются так называемыми стенками дислокаций. При этом дислокации располагаются друг под другом. Это связано с тем, что система одноимённых дислокаций в параллельных плоскостях скольжения наиболее устойчива, когда дислокации располагаются друг под другом.



Под микроскопом субграница выглядит как цепочка ямок травления, равноотстоящих друг от друга. Чем меньше угол разориентации тем меньше плотность дислокации и меньше плотность ямок травления.

При больших углах разориентации границы называются больше угловыми, а разделяемая ими область материала – кристаллитами или зёрнами. Материал, содержащий такие границы является поликристаллическим. Больше угловые границы также имеют дислокационную природу. Химические и физические свойства поликристаллического кремния в значительной степени зависят от структуры типа и размера зёрен, которые в свою очередь сильно зависят от технологии получения материала.

Высокая чувствительность свойств поликристаллического кремния к изменению технологических параметров с одной стороны позволяет в широких пределах изменять свойства материала, а с другой затрудняет получение материала с воспроизводимыми свойствами. Получение стабильных и необходимых свойств поликристаллического кремния осложняется именно наличием межзёренных границ. Межзёренная граница представляет собой регулярное множество дислокаций, что приводит к локальным искажениям решётки вблизи поверхности раздела внутри поликристалла. Такие локальные искажения приводят к образованию оборванных связей атомов. Состояние на межзёренных границах могут действовать в качестве ловушечных центров, а также центров рекомбинации и рассеивания. Именно из-за сильной рекомбинации носителей заряда на границах зёрен до настоящего времени не реализованы биполярные транзисторы на основе поликристаллического кремния.



Повышенное рассеивание носителей на границах снижает их подвижность, что ограничивает быстродействие тонкоплёночных транзисторов. Захват подвижных носителей на состояниях на межзёренных границах приводит к возникновению потенциального барьера на границах зёрен, при этом изменение концентрации носителей в приграничном слое приводит к образованию области пространственного заряда нескомпенсированных доноров или акцепторов в случае материала n или p-типа соответственно. Следствием этой является искривление зон. Зонная диаграмма для поликремния n-типа имеет следующий вид. – средний размер зерна.

Наличие потенциального барьера на межзёренной является причиной экспоненциальной температурной зависимости электропроводности поликристаллического кремния, поскольку вклад в проводимость вносят только те электроны, которые в состоянии преодолеть потенциальный барьер на границе зёрен.

Средняя электропроводность поликристаллического кремния равна , – электропроводность основной массы зерна поликристаллического кремния, - потенциальный барьер, который необходимо преодолеть электрону. Нелегированные плёнки поликристаллического кремния обычно характеризуются содержанием остаточной примеси и удельным сопротивлением , что на несколько порядков превосходит удельное сопротивление нелегированного монокристаллического кремния. Более высокое сопротивление поликристаллического материала обусловлено влиянием межзёренных границ. Плёнки поликристаллического кремния обладают высокой термической стабильностью, что делает их совместимыми с высокотемпературными процессами. Важное значение в технологии имеет также возможность формирования высококачественной границы раздела с диоксидом кремния.



 

2.Способы получения поликристаллического кремния

Традиционно поликристаллический кремний получают из технического кремния путём перевода его в летучие силаны (моносилан, хлорсиланы, фторсиланы) с последующими разделением образующихся силанов, ректификационной очисткой выбранного силана и восстановлением силана до металлического кремния.

Изначально при промышленном производстве поликремния использовались хлорсиланы. На 2011 год технологии на основе трихлорсилана остаются доминирующими. Идущие на смену хлорсилановым фторсилановые технологии считаются более дешёвыми, но менее экологичными.

Для восстановления кремния в технологиях, использующих трихлорсилан, в основном применяется Сименс-процесс: в протоке реакционной парогазовой смеси силанов и водорода на поверхности нагретых до 650—1300С кремниевых стержней (либо крошек в кипящем слое) происходит восстановление силана и осаждение свободного кремния. Температурный режим существенно зависит от особенностей конструкции реактора и технологии. За счёт высокой температуры стержней освобождающиеся атомы кремния сразу встраиваются в кристаллическую решётку, образуя кристаллы дендритной структуры. Образующиеся в ходе реакции газообразные продукты уносятся протоком непрореагировавшей парогазовой смеси и после очистки и разделения могут быть использованы повторно.

Стадии получения поликремния в Сименс-процессе:

Синтез трихлорсилана методом низкотемпературного каталитического гидрирования четыреххлористого кремния:

 

3SiCl4 + 2H2 +Siмет. ↔ 4SiHCl3

Четыреххлористый кремний преобразуется в трихлорсилан с использованием рецикла образующихся побочных кремнийсодержащих веществ, что снижает себестоимость и устраняет экологические проблемы:

 

2SiHCl3 ↔ SiH2Cl2 + SiCl4

 

2SiH2Cl2 ↔ SiH3Cl + SiHCl3

 

2SiH3Cl ↔ SiH4 + SiH2Cl2

 

SiH4 ↔ Si + 2H2

 

Выделяющийся при этом водород можно использовать многократно.

EPC Company Group предложила EPC-SCHMID технологию, основанную на диспропорционировании хлорсиланов, очистке и последующем пиролизе моносилана. По уверениям разработчиков, по энергоёмкости и материалоёмкости технология выигрывает примерно по 30% по сравнению с традиционным Сименс-процессом и обеспечивает выход годного продукта на уровне 80% при дополнительной очистке поликремния от бора.

Известны, но пока не получили широкого применения методы получения поликристаллического кремния через аморфную фазу методами гидролиза силанов, а также восстановления силанов в плазме ВЧ и СВЧ разрядов в связи с легкой загрязняемостью и сложностью перевода аморфного кремния в кристаллическую фазу. Развиваются Сименс-технологии, например, с использованием белков, полимеров и т. п.

Получение поликристаллических кремния из моносилана SiH4.

Получение поликристаллических стержней кремния путем термического разложения моносилана SiH4 производится по аналогич­ной методике при температурах 1000 °С. Образующийся при раз­ложении водород SiH4(Г)->Si(T) + 2Н2(Г) обладает высокой сте­пенью чистоты и используется в сопутствующем производстве. По­лучаемый по этой технологии поликремний обладает более высокой степенью чистоты, чем кремний, получаемый восстановлением ТХС.

Извлечение кремния из SiCl4 и SiJ4 осуществляют восстановле­нием тетрахлорида кремния цинком либо термической диссоциацией тетраиодида.

Получаемые поликристаллические стержни перед использова­нием в процессах выращивания монокристаллов методом Чохраль­ского разламывают на удобные для загрузки в тигель куски или разрезают на мерные заготовки. Для процесса бестигельной зон­ной плавки стержни обрабатывают под нужный диаметр шлифовкой. Удаление поверхностных слоев, обогащенных примесями и газами, кроме того, предотвращает разбрызгивание кремния из расплавлен­ной зоны.

Современные технологические схемы получения поликристалли­ческого кремния включают в себя регенерацию и повторное ис­пользование всех компонентов и продуктов реакций восстановления (пиролиза), что улучшает технико-экономические показатели про­цесса, снижает себестоимость получаемого кремния, делает процесс экологически более чистым.

Рассмотренный процесс осаждения поликристаллического крем­ния используется также для получения на его основе поликристал­лических труб на углеродных оправках. Вследствие высокой чистоты и прочности эти трубы применяются вместо кварцевых в печах высокотемпературных процессов (свыше 1200 °С) в технологии полупроводниковых и микроэлектронных приборов. Кремниевые тру­бы не подвержены просаживанию или другой деформации в течение нескольких лет эксплуатации, несмотря на постоянное температур­ное циклирование между 900 и 1250 °С, тогда как кварцевые трубы имеют ограниченный срок службы при тех же процессах.

Потребление поликристаллического кремния электронной промышленностью составляет несколько тысяч тонн в год.

Для получения кремния высокой чисто­ты поликристаллические стержни подвергают кристаллизационной очистке методом зонной плавки в вакууме. При этом помимо крис­таллизационной очистки кремния от нелетучих примесей (преиму­щественно акцепторов) происходит существенная очистка его от летучих доноров за счет испарения их из расплавленной зоны. Так, после 15 проходов расплавленной зоны со скоростью 3 мм/мин, по­лучают монокристаллы кремния р-типа электропроводности с остаточной концентрацией примеси менее 1013 см-3 и удельным со­противлением (по бору) более 104 Ом*см.

Способ получения поликристаллического кремния водородным восстановлением трихлорсилана на кремниевые стержни-основы включает предварительную очистку исходных компонентов - водорода и трихлорсилана, приготовление парогазовой смеси в испарителе, осаждение кремния на нагретых кремниевых стержнях в реакторе восстановления, регенерацию компонентов отходящей парогазовой смеси путем фракционной конденсации хлорсиланов и хлористого водорода и возврата непрореагировавших трихлорсилана и водорода на стадию приготовления парогазовой смеси для восстановления кремния. Приготовление парогазовой смеси для восстановления осуществляют путем барботажа водорода через слой трихлорсилана в испарителе, отходящую после восстановления парогазовую смесь перед фракционной конденсацией подвергают жидкостному компримированию для создания в системе аппаратов давления, необходимого для рециркуляционной подачи парогазовой смеси в реактор восстановления; полученный после фракционной конденсации конденсат хлорсиланов подвергают ректификации с выделением в отдельный продукт трихлорсилана и тетрахлорида кремния; подачу парогазовой смеси в реактор восстановления осуществляют в количестве, пропорциональном площади поверхности кремниевых стержней в момент подачи; количество парогазовой смеси определяют зависимостью

перед восстановлением осуществляют предварительный (стартовый) нагрев стержней плазменным нагревом, для нагрева используют в качестве плазмообразуюшего газа азот, перед восстановлением кремниевые стержни-основы подвергают травлению хлористым водородом, полученным после фракционной конденсации отходящей парогазовой смеси. После окончания восстановления образующиеся в процессе полихлориды со стенок реактора удаляют смесью тетрахлорида кремния и водорода при мольном отношении 1 : 1, снижаются энергозатраты, повышается качество кремния, производительность процесса, экологическая безопасность, снижается расход реагентов на единицу продукции.

Способы очистки поликристаллического кремния

Один из способов очистки кремния включает получение первого жидкого расплава из кремния и растворителя - металла, выбранного из группы: медь, олово, цинк, сурьма, серебро, висмут, алюминий, кадмий, галлий, индий, магний, свинец, их сплавов, а также их комбинаций; контактирование первого жидкого расплава с первым газом с получением дросса и второго жидкого расплава; разделение дросса и второго жидкого расплава; охлаждение второго жидкого расплава с образованием первичных кристаллов кремния и первого маточного раствора; и разделение первичных кристаллов кремния и первого маточного раствора. Изобретение обеспечивает получение промышленных количеств (например, по меньшей мере, около 1000 т/год) очищенного кремния при сравнительно небольших расходах. Известны многие различные способы и устройства для снижения количества примесей в кремнии, включающие, например, зонное плавление, отгонку газообразного силана, впрыск газа, выщелачивание кислотой, шлакование и направленное отверждение. Однако бор, фосфор, титан, железо и некоторые другие элементы могут быть удалены известными до настоящего времени способами до получения желаемой степени чистоты с большим трудом и/или дорогостоящими методами обработки.

В настоящее время кремний обычно очищают способом, который включает восстановление и/или термическое разложение очень чистого испаряющегося соединения кремния, такого как трихлорсилан. Этот способ является очень дорогим, требующим больших капитальных вложений методом получения кремния, который имеет высокую степень чистоты, требующуюся в некоторых областях применения, таких как солнечные элементы.

Поликристаллический кремний сверхвысокой очистки получают разложением силана соответствующей чистоты. Такой материал является исходным для выращивания высокочистого кремния , с предельно низким содержанием примесей.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.