Сделай Сам Свою Работу на 5

Влияние внешних и внутренних факторов на химическую коррозию металлов.





Скорость и характер процесса химической коррозии металлов зависит от ряда факторов.

Внешними называют факторы, связанные с составом коррозионной среды и условиями коррозии (температура, давление, скорость перемещения коррозионной среды и т.д.).

Внутренними называют факторы, связанные с составом, структурой, внутренними напряжениями в металле, качеством обработки поверхности металла и др.

Температура.

Температура - это мощный внешний фактор. Характер влияния температуры на скорость окисления металла определяется зависимостью константы скорости реакции окисления (К) и коэффициента диффузии (D)от температуры. И K=f(T) и D=f(T) описываются одним и тем же уравнением (уравнение Аррениуса):

K = K0 * exp (-E/RT), (5.1)

где К0 - константа;

Е - энергия активации химической реакции.

D = D0 * exp (-E’/RT), (5.2)

где D0 – константа;

Е - энергия активации диффузии.

Таким образом,вне зависимости от вида контролирующей стадии процесса окисления, с повышением температуры скорость окисления резко возрастает.

Колебания температуры,особенно переменный нагрев и охлаждение, увеличивают скорость окисления металла,т.к. в защитной пленке образуются трещины.



Состав газовой фазы.

Влияние состава газовой фазы на скорость коррозии металла велико, специфично и изменяется с температурой. В частности, на скорость окисления железа и стали, особенно сильно влияют кислород, соединения серы, водяные пары.

Приведенные ниже данные свидетельствуют о зависимости относительной скорости коррозии стали с 0,17%С от состава газовой фазы при 900 оС:

чистый воздух-------------100%

чистый воздух+2%SO2--------118%

чистый воздух+5%H2O -------134%

кислород -----------------200%

чистый воздух+5%SO2+5%H2O--276%

Значительное влияние на коррозию сталей и сплавов оказывают продукты горения топлива,содержащие ванадий (например V2O5).

Это соединение находится в золе от сжигания дешевого топлива-мазута, нефтепродуктов. Зола, налипая на металл, увеличивает скорость его коррозии в десятки раз. Причина этому - “ванадиевая коррозия”, обусловленная легкоплавкостью V2O5 , и его способностью офлюсовывать (переводить в жидкое состояние) химические соединения золы и окалины, что снижает защитные свойства последней ,а также участвовать в процессе окисления:



4Fe + 3V2O5 = 2Fe2O3 + 3V2O3, (5.3)

V2O3 + O2 = V2O5, (5.4)

V2O5 + Fe2O3 = 2FeVO4. (5.5)

Повышение содержания СО в газовой фазе понижет скорость коррозии углеродистых и низколегированных сталей, но при больших количествах СО в газовой фазе может произойти науглероживание поверхности стали. При этом возможны следующие химические реакции:

2CO + O2 = 2CO2, (5.6)

2CO = Cсаж + CO2. (5.7)

 

Скорость движения газовой фазы.

Окисление, как гетерогенный процесс, определяется скоростью подвода и отвода реагентов в зону реакции. Поэтому, чем больше скорость движения потока газа, тем больше и скорость окисления металла.

Состав сплава.

Применительно к наиболее важным конструкционным сплавам – сплавам на основе железа, можно отметить следующее для случая газовой коррозии.

1.При высоких температурах (более 800оС) с увеличением содержания углерода в стали скорость ее окисления и обезуглероживания

уменьшается вследствие более активного образования СО, что снижает окислительный потенциал газовой фазы.

2.Сера фосфор, никель, марганец практически не влияют на скорость окисления железа.

3.Титан, медь, кобальт, бериллий заметно снижают скорость окисления железа.

4.Хром, алюминий, кремний сильно замедляют окисление железа.

5. Ванадий, вольфрам и молибден могут значительно ускорить окисление стали, которое иногда носит катастрофический характер.

Структура сплава.

Анализ экспериментальных данных свидетельствует о том, что чем меньше в сплаве структурных составляющих, тем выше его жаростойкость. Применительно к сплавам железо – углерод, наиболее устойчивой является аустенитная структура. Стали с двухфазной аустенитно – ферритной структурой менее устойчивы против окисления. Их меньшая жаростойкость связывается с большей неоднородностью образующейся защитной пленки, что приводит к ее разрушению при росте (неоднородность возникающих внутренних напряжений).



 

Так хромо - никелевые стали с однофазной аустенитной структурой более устойчивы против окисления, чем двухфазные: Х12Н12М2Т, Х12Н9Т ведут себя лучше, чем ОХ21Н5МД2Т, 1Х21Н5Т.

На жаростойкость чугунов кроме их состава влияет и структура. Существенное влияние оказывает форма графитных включений:при шаровидной форме графита стойкость против окисления выше ,чем при пластинчатой.

Режим нагрева металла.

Влияние режима нагрева металла может быть рассмотрено в контексте влияния колебаний температуры. То есть переменные нагрев и охлаждение увеличивают скорость окисления ввиду нарушения сохранности защитной пленки.

 

Не нашел

 

Коррозионные процессы с кислородной деполяризацией.

Процессы коррозии металлических материалов, в которых катодная деполяризация осуществляется растворенным в электролите кислородом по реакции:

O2 + 4e- + 2H2O Û 4OH-, (7.14)

называются коррозионными процессами с кислородной деполяризацией.

Термодинамика процесса коррозии с кислородной деполяри-

зацией.

Известно, что самопроизвольное осуществление коррозионного процесса возможно, при выполнении условия:

jк > jМе, (7.15)

а для случая коррозии с кислородной деполяризацией это неравенство запишется:

2 > jМе, (7.16)

где jо2=jо20 + RT/nF*ln Po2/a4OH- ;

Po2 - парциальное давление в газовой фазе;

aOH- - активность ионов OH-.

Расчет показывает, что вне зависимости от значений Po2 и aOH-, значения jо2 очень положительны, следовательно условия самопроизвольного течения процесса соблюдаются во многих случаях.

На практике, коррозионный процесс с кислородной деполяризацией наблюдается для металлических материалов находящихся:

- в атмосфере (ржавление металлического оборудования);

- в воде и в нейтральных водных растворах солей (коррозия обшивок судов,систем охлаждения доменных,мартеновских,конвертерных, электродуговых печей и т.д.);

- в грунте (коррозия подземных продуктопроводов).

Таким образом, процесс коррозии с кислородной деполяризацией – весьма распространенный процесс.

 

7.10.2. Схема и стадии процесса коррозии с кислородной деполяризацией.

Катодный процесс с участием кислорода включает ряд последовательных стадий (рис.7.3):

-растворение кислорода воздуха в электролите (первая стадия);

-транспорт растворенного кислорода в объеме электролита в результате движения последнего (вторая стадия);

-перенос растворенного кислорода сквозь приэлектродный слой к катодным участкам поверхности металла (третья и четвертая стадии);

-ионизация кислорода – электрохимическая реакция (пятая стадия):

(в нейтральных и щелочных растворах)

O2 + 4e- + 2H2O Û 4OH-, (7.17)

(в кислых растворах)

O2 + 4e- + 4H+ Û 2H2O , (7.18)

-отвод ионов OH- от катодных участков поверхности корродирующего металла в глубину электролита (шестая стадия).

Катодный процесс с кислородной деполяризацией может тормозиться на стадии электрохимической реакции ионизации кислорода (кинетический контроль процесса), что приводит к появлению электрохимической поляризации (DjК)Э.Х.= q. Электрохимическую поляризацию еще называют перенапряжением ионизации кислорода. Этот вид поляризации наблюдается при небольших плотностях катодного тока, в сильно перемешиваемых электролитах, при очень тонкой пленке продуктов коррозии на металле (например, в случае атмосферной коррозии).

Если катодный процесс испытывает торможение на стадиях массопереноса, то это приводит к концентрационной поляризации (DjК)КОНЦ. В этом случае катодный процесс находится в диффузионной области контроля. Он имеет место при плотностях катодного тока, близких к предельным, в спокойных электролитах, либо при наличии толстой пленки труднорастворимых продуктов коррозии (подземная коррозия).

Таким образом, результирующее смещение катодного электродного потенциала (DjК) рассчитывается из выражения:

DjК=(DjК)Э.Х + (DjК)КОНЦ. (7.19)

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.