Сделай Сам Свою Работу на 5

Механический и геометрический смысл производной. Связь непрерывности и дефференцируемости.





Производная. Рассмотрим некоторую функцию y = f ( x ) в двух точках x0 и x0 + : f ( x0 ) и f (x0 + ). Здесь через обозначено некоторое малое изменение аргумента, называемоеприращением аргумента; соответственно разность между двумя значениями функции: f ( x0 + ) f ( x0) называется приращением функции. Производной функции y = f ( x ) в точке x0называется предел:


Если этот предел существует, то функция f ( x ) называется дифференцируемой в точке x0 . Производная функции f ( x ) обозначается так:

Геометрический смысл производной. Рассмотрим график функции y = f ( x ):


Из рис.1 видно, что для любых двух точек A и B графика функции:


где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.



Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 , f (x0) ). В общем случае уравнение прямой с угловым коэффициентом f ’( x0) имеет вид:

y = f ’( x0) · x + b .

Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:

f ( x0) = f ’( x0) · x0 + b ,

отсюда, b = f ( x0) – f ’( x0) · x0, и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f ( x0) + f ’( x0) · ( x – x0) .

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x ( t ) времени t. В течение интервала времени от t0 до t0 + точка перемещается на расстояние: x ( t0 + ) x ( t0 ) = , а её средняя скорость равна:va =  . При 0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v ( t0) материальной точки в момент времени t0 . Но по определению производной мы имеем:

отсюда, v ( t0) = x’ ( t0) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ).



Теорема (необходимое условие дифференцируемости функции).Если функция дифференцируема в точке, то онанепрерывна в этой точке.

Доказательство. Пусть функция у=f(x) дифференцируема в точке х0. Дадим в этой точке аргументу приращение х. Функция получит приращение у. Найдем .

.

Следовательно, у=f(x) непрерывна в точке х0.

Следствие. Если х0 – точка разрыва функции, то в ней функция не дифференцируема.

Утверждение, обратное теореме, не верно. Из непрерывности не следует дифференцируемость.

Пример. у=|х| , х0=0.

Y

0 X

х>0, ;

х<0, .

В точке х0=0функция непрерывна, но производной не существует.

Производная сумы, разности, производная, дроби,сложной и обратной функции.

Правила вычисления производных

Пусть функции и имеют производные в точке . Тогда

1. Константу можно выносить за знак производной.

Пример

2. Производная суммы/разности.

Производная суммы/разности двух функций равна сумме/разности производных от каждой из функций.

Пример

Производная произведения.

Пример

Производная частного.

Пример

. Производная сложной функции.

Производная сложной функции равна производной этой функции по промежуточному аргументу , умноженной на производную от промежуточного аргумента по основному аргументу .

и имеют производные соответственно в точках и . Тогда

Теорема

(О производной обратной функции)



Если функция непрерывна и строго монотонна в некоторой окрестности точки и дифференцируема в этой точке, то обратная функция имеет производную в точке , причем .

Производные основных элеменатрных функций.

ФУНКЦИЯ ПРОИЗВОДНАЯ
С
x
x2 2x
xn nxn-1
ex ex
ax ax lna
ln x 1/x
logax 1/(x lna)
sin x cos x
cos x -sin x
tg x 1/cos2 x
ctg x - 1/sin2 x
arctg x 1/(1 + x2)

Производная от константы

c ′ = 0, где c = const

Производная степенной функции

(xn )′ = n · xn - 1

Производная показательной функции

(ax )′ = ax · ln a

Производная экспоненты

(ex )′ = ex

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

(a + b)n = an+n·an-1·b + 1/2∙n(n – 1)an-2b2+ 1/(2∙3)∙n(n – 1)(n – 2)an-3b3+…+ bn,

можно доказать, что

Итак, если x получает приращение Δx, то f(xx) = (x + Δx)n, и, следовательно,

Δy=(xx)nxn =n·xn-1·Δx + 1/2·n·(n–1)·xn-2·Δx2 +…+Δxn.

Заметим, что в каждом из пропущенных слагаемых есть множитель Δx в степени выше 3.

Найдем предел

Мы доказали эту формулу для n Î N. Далее увидим, что она справедлива и при любом n Î R.

  1. y= sin x. Вновь воспользуемся определением производной.

Так как, f(xx)=sin(xx), то

Таким образом,

  1. Аналогично можно показать, что

  1. Рассмотрим функцию y= ln x.

Имеем f(xx)=ln(xx). Поэтому

Итак,

 

 

12.Понятие дифференциала функций. Таблица дифференциалов и их применение.

Пусть функция дифференцируема в точке , то есть приращение этой функции можно представить в виде суммы двух слагаемых: линейного относительно и нелинейного членов:

где при .

Определение

Дифференциалом функции называется линейная относительно часть приращения функции. Она обозначается как или . Таким образом:

Замечание

Дифференциал функции составляет основную часть ее приращения.

Замечание

Наряду с понятием дифференциала функции вводится понятие дифференциала аргумента. По определению дифференциал аргумента есть приращение аргумента:

Замечание

Формулу для дифференциала функции можно записать в виде:

Отсюда получаем, что

Итак, это означает, что производная может быть представлена как обыкновенная дробь - отношение дифференциалов функции и аргумента.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.