Сделай Сам Свою Работу на 5

Основные конструкции конденсаторов постоянной емкости





Наиболее распространенны следующие конструкции конденсаторов постоянной емкости.

1. Рулонная. В этом случае тонкая пленка диэлектрика с двух сторон перекладывается металлическими обкладками, после чего вся система сворачивается в рулончик.(рис. 2.3,а). Такую конструкцию имеют бумажные (К41, К42), полистирольные (К71), фторопластовые (К72), полиэтилентерефталатные (К73) и другие конденсаторы с пластичным или гибким диэлектриком. В качестве металлических обкладок используют тонкую фольгу из олова или алюминия, или напыливают ее на диэлектрик. Недостатками такой конструкции являются: большая индуктивность и относительно малая удельная емкость. Такие конденсаторы нельзя использовать как помехозащитные.

2. Пакетная. В этом случае тонкие пластины диэлектрика перекладывают металлическими обкладками поочередно. После этого такую систему сжимают в пакет, а металлические обкладки замыкают через одну (рис. 2.3,б). Металлические обкладки тоже могут быть как из фольги, так и напыленными. Такая конструкция имеет небольшую индуктивность, но маленькую удельную емкость. В пакетной конструкции изготовляют слюдяные (31), стеклянные (21), лакопленочные (76) конденсаторы, а также некоторые керамические.



3. Цилиндрические. Диэлектрик изготовляют как пустотелую трубку, внешнюю и внутреннюю поверхности которой металлизируют (рис. 2.3,в). Такая конструкция имеет очень малую индуктивность, но и малую удельную емкость. Поэтому такие конденсаторы используют как высокочастотные. Такие конденсаторы изготовляют, прежде всего, из керамики (К10, К15).

4. Оксидные. В этом случае диэлектриком служит оксид металла. Например, для конденсаторов оксидно-алюминиевых (К50) это Al2O3, а для оксидно-танталовых (К51) - Ta2O3. Одной обкладкой служит металлическая фольга (анод), а другой (катод) служит электролит, которым пропитывают прокладку из бумаги или ткани (рис. 2.3,г). Такие конденсаторы имеют большую удельную емкость, но относительно низкие напряжения и большие ди

 
 

электрические потери. Кроме того, по мере службы происходит высыхание электролита и конденсатор теряет свою емкость. Особенно это касается оксидно-алюминиевых конденсаторов типа К-50.



5. Литые секционные. Такую конструкцию имеют керамические конденсаторы. С керамики отливают “гребенку” с очень тонкими стенками. Зазор между стенками металлизируют (рис. 2.3,д). Такие конденсаторы имеют большую удельную емкость и малую индуктивность. Это керамические конденсаторы типа К10, КМ-4, КМ-5 и керамические SMD-конденсаторы.

6. Опорные и проходные конденсаторы. Они относятся к классу помехоподавляющих конденсаторов. Опорный конденсатор - это такой конденсатор, в котором один из выводов представляет собой опорную металлическую пластину с резьбовым соединением и соединяется с корпусным заземлением, а второй вывод служит для ввода цепей питания (рис.2.4 а). Проходной конденсатор – это такой конденсатор, который имеет коаксиальную конструкцию. Один из выводов такого конденсатора представляет собой токонесущий стержень, по которому протекает полный ток внешней цепи, а второй вывод соединяется с корпусным заземлением (рис.2.4 б).

 

 
 

2.2.4 Характеристика и использование некоторых типов конденсаторов

Постоянной емкости

 

Тип диэлектрика и конструкция играют важную роль при использовании конденсаторов.

Полиэтилентерефталатные конденсаторы (К73) имеют очень малую абсорбцию и малые утечки. Поэтому их выгодно использовать как интегрирующие конденсаторы в ЦАП, таймерах, генераторах малых частот.

Полистирольные (К71) и фторопластовые (К72) конденсаторы также имеют малые утечки. Кроме того, их свойства очень мало изменяются с частотой. Поэтому такие конденсаторы используют в контурах, где важную роль играет стабильность параметров.



Бумажные конденсаторы (К40…К42) имеют большую реактивную мощность. Поэтому их широко используют для защиты от индустриальных помех, как искрогасящие и пусковые.

Комбинированные конденсаторы (К75) имеют большое пробивное напряжение и широко используются в цепях с высоким напряжением.

Оксидные конденсаторы (К50…К53) имеют большую удельную емкость. Поэтому их выгодно использовать в сглаживающих фильтрах блоков питания. При этом танталовые конденсаторы (К51) имеют лучшие частотные свойства.

Следует отметить, что оксидно-алюминиевые конденсаторы со временем теряют свою емкость из-за высыхания электролита. С этой точки зрения более эффективны оксидно-танталовые, оксидно-ниобиевые и оксидно-полупроводниковые конденсаторы.

Керамические конденсаторы обладают малой индуктивностью. Их применяют в первую очередь как блокирующие и высокочастотные конденсаторы. В последнем случае их используют для термокомпенсации, фиксированной настройке контуров.

 

Переменные конденсаторы

Переменный конденсатор это такой конденсатора, емкость которого может изменяться механически в любое время в определенных пределах многократно.

Такие конденсаторы широко применяются для оперативной перестройки резонансных контуров. Изменение емкости переменных конденсаторов с механическим управлением достигается изменением площади его обкладок или изменением зазора между обкладками. Последний способ применяется крайне редко. Наибольшее распространение получили конденсаторы переменной емкости (КПЕ) с воздушным диэлектриком, у которых группа параллельных пластин (ротор) перемещается между пластинами другой группы (статор) путем поворота пластин ротора.

Переменные конденсаторы классифицируются по следующим признакам:

- по виду диэлектрика они бывают с твердым и газообразным диэлектриком;

- по закону изменения емкости они бывают: прямоемкостные – изменение емкости прямо пропорционально углу поворота ротора; прямочастотные – изменение частоты резонансного контура прямо пропорционально углу поворота ротора; прямоволновые – изменение длины волны резонансного контура прямо пропорционально углу поворота ротора; логарифмические – изменение логарифма емкости прямо пропорционально углу поворота ротора. Закон изменения емкости определяется назначением конденсатора. Прямочастотные конденсаторы имееют равномерное изменение частоты по диапазону, а прямоволновые – равномерное изменение длины волны. Логарифмический конденсатор характеризуется постоянством относительного изменения частоты или емкости для одинаковых углов поворота ротора для постоянной точности отсчета.

- по величине емкости и диапазону перестраиваемых частот;

- по форме электродов они бывают пластинчатыми; цилиндрическими и спиральными;

- по числу секций конденсаторы делятся на односекционные и многосекционные;

- по углу поворота переменные конденсаторы делятся на конденсаторы: с нормальным углом поворота (около 1800), с расширенным углом поворота (более1800) и уменьшенным углом поворота (менее1800).

Переменные конденсаторы характеризуются следующими параметрами:

1. Минимальная емкость – это минимально достижимая емкость конденсатора;

2. Максимальная емкость – это максимально достижимая емкость конденсатора;

3. Переменная емкость – это разность между максимальной и минимальной емкостью конденсатора;

4. Номинальное напряжение – этот параметр соответствует подобному параметру для постоянных конденсаторов;

5. Температурный коэффициент емкости - этот параметр соответствует подобному параметру для постоянных конденсаторов;

6. Момент вращения – характеризует механические усилия, необходимые для поворота ротора конденсатора.

Стабильность параметров переменных конденсаторов в значительной степени определяется действием температуры и механических факторов, а также конструкции и точности сборки конденсатора. Так ТКЕ зависит от используемых материалов, конструкции и качества сборки конденсатора. Увеличение площади рабочей пластины и ее толщины увеличивает ТКЕ, а увеличение рабочего зазора снижает ТКЕ. Реально ТКЕ переменных конденсаторов лежит в диапазоне (5…500)·10-6 К-1.

Габариты и масса переменных конденсаторов в основном определяется диэлектрической проницаемостью диэлектрика, площадью пластин и рабочим зазором. Для уменьшения габаритов применяются вместо воздушных диэлектриков диэлектрики с диэлектрической проницаемостью больше 1 и повышенной электрической прочностью.

Конденсаторы переменной емкости состоят из корпуса, ротора, статора, подшипников и токосъемников. Статор конденсаторов переменной емкости, как правило, выполняется изолированным от корпуса конденсатора. Ротор соединяется с корпусом при помощи токосъемников. В многосекционных конденсатора ДВ, СВ и КВ диапазонов секции ротора располагаются на одной металлической оси. Для области метровых и ультракоротких волн для уменьшения паразитной связи между секциями ротора ось изготавливают из керамики.

Упрощенная конструкция конденсатора переменной емкости с воздушным зазором приведена на рис.2.5. Для подгонки емкости отдельных секций конденсатора крайние пластины ротора и статора делают разрезными.

 
 

Система обозначений переменных конденсаторов соответствует принятой для постоянных конденсаторов, которая описана в разделе 2.2.2, и состоит из двух букв КП(конденсатор переменный), цифры, обозначающей тип диэлектрика согласно табл.2.4, и числа, обозначающего порядковый номер разработки конденсатора.

Например: КП2-13 3,0/150 – конденсатор переменный с воздушным диэлектриком, порядковый номер разработки 13,минимальная емкость 3 пФ, максимальная емкость 150 пФ.

До действующей системы обозначений переменные конденсаторы обозначались набором от двух до четырех букв, которые отражали тип диэлектрика и его конструктивные особенности.

Например: КПВМ–2 – конденсатор переменный воздушный малогабаритный, номер разработки 2.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.