Сделай Сам Свою Работу на 5

Электрическое поле на границе проводник - вакуум





 

В отсутствие внешнего электрического поля заряды узлов кристаллической решетки металлических проводников скомпенсированы зарядами квазисвободных электронов проводимости. В поле на электроны проводимости действуют сила

.

В результате происходит перераспределение электрических зарядов в объёме проводника (электростатическая индукция), которое приводит к появлению внутри проводника "собственного" электрического поля с напряженностью ', направление которого противоположно направлению вектора напряженности внешнего электрического поля o. Поэтому условием перераспределения (движения) электрических зарядов в объёме проводника может служить выражение

= o + ' ¹ 0,

где – напряженность результирующего электрического поля.

Перераспределение электрических зарядов в объёме проводника (рис. 2.1, а) приводит к искажению внешнего электрического поля (рис. 2.1, б).


При = o + ' = 0

перераспределение электрических зарядов внутри проводника прекращается (рис. 2.1б). Выражение (2.3) называют условием равновесия зарядов в проводнике.

Таким образом, нескомпенсированные электрические заряды (в заряженном проводнике) могут находиться только на его поверхности.



Доказать приведенное утверждение можно, воспользовавшись теоремой Остроградского – Гаусса:

.

Так как внутри проводника E = 0, то En = E×cosa = 0, . Следовательно, ,

что и требовалось доказать.

Между поверхностной плотностью заряда проводника и напряженностью электрического поля вблизи его поверхности существует связь, которую можно установить из следующих рассуждений.

Поток вектора напряженности электрического поля через замкнутую цилиндрическую поверхность, перпендикулярную некоторой площадке dS поверхности проводника (рис. 2.2),

Ф'E = Ф'o + Ф''o + Ф'б + Ф''б.

Так как внутри проводника электрическое поле отсутствует (E = 0), то Ф''о и Ф''б внутри проводника равны нулю. Поток вектора напряженности электрического поля через боковую поверхность вне проводника Ф'б тоже равен нулю, так как проекция вектора напряженности электрического поля на направление положительной нормали (En) в любой точке боковой поверхности равна нулю. Следовательно,



.

Согласно теореме Остроградского - Гаусса

.

В нашем случае можно принять

.

Таким образом

,

а .

Следовательно, напряженность электрического поля вблизи поверхности проводника пропорциональна поверхностной плотности его заряда.

С этим связан тот факт, что у выпуклых частей проводника напряженность электрического поля и поверхностная плотность электрических зарядов больше, чем у вогнутых (рис. 2.3). Особенно велики они на остриях. В результате вблизи выпуклых частей проводника возникает ионизация и движение ионов, молекул газа, возникает так называемый "электрический ветер". Заряд проводника при этом уменьшается. Он как бы стекает с поверхности проводника. Такое явление называют истечением заряда с поверхности проводника (с острия).

Поверхностное распределение зарядов на проводниках используется для передачи заряда от одного проводника к другому, в устройстве электростатических машин для получения больших разностей потенциала.

Условие = 0 внутри проводника используется для устройства электростатической защиты приборов от влияния внешних электрических полей. С этой целью достаточно поместить прибор внутрь проводника – экрана.

Внутри проводника

,

что возможно при

E = 0, , .

Таким образом, весь объём проводника, при условии равновесия заряда, является эквипотенциальным.

Поверхность такого проводника также является эквипотенциальной, так как при перемещении по ней в каждой точке вектор напряженности электрического поля перпендикулярен направлению перемещения ( ^ l), cosa = 0. Следовательно



; .

Это означает, что при соединении проводников с различными потенциалами происходит выравнивание потенциалов на проводниках за счет переноса зарядов от одних проводников к другим. Это происходит до тех пор, пока у всех проводников потенциал не станет одним и тем же.

Равенство потенциала на всех соединенных между собой проводниках используется для экспериментального определения потенциала в различных точках электрического поля.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.