Сделай Сам Свою Работу на 5

Проблемы с маятником Фуко 3 глава





Скорость вращения маятника Фуко зависит от широты. На Северном полюсе Земли кажется, будто маятник совершает полный оборот на 360° за каждый оборот Земли (т.е. каждый звездный день), так как планета под ним совершает полный оборот. В Северном полушарии на широте Британских островов скорость вращения уменьшается примерно до 280° в день и продолжает уменьшаться при приближении к экватору, где маятник Фуко вообще не вращается.

В течение ста лет все знали, что маятник Фуко вращается совершенно предсказуемым образом в любом конкретном месте земной поверхности. В 1954 г. французский инженер, экономист и будущий физик Морис Аллэ обнаружил, что так бывает не всегда. Он проводил эксперимент с целью изучения возможной связи между магнетизмом и тяготением. В ходе этого эксперимента он высвобождал маятник Фуко на 14 минут в течение 30 суток и регистрировал направление движения в градусах. По чистой случайности в один из этих дней произошло солнечное затмение.

Каждый раз маятник двигался с механической точностью, но 30 июня 1954 г., когда произошло частичное солнечное затмение, один из ассистентов Аллэ заметил, что маятник как будто сорвался с цепи. После начала затмения плоскость колебания маятника внезапно начала вращаться в обратном направлении. Отклонение достигло максимального значения за 20 минут до максимума солнечного затмения, когда Луна закрыла значительную часть солнечной поверхности, и вернулось к норме после окончания затмения. Казалось, что колебания маятника каким-то образом связаны со взаимным расположением Земли, Луны и Солнца.



Это было поразительно и совершенно необъяснимо. Эксперимент Аллэ проводился в помещении, куда не проникал солнечный свет, поэтому было непонятно, каким образом затмение могло прямо повлиять на него. Сам Аллэ затруднился объяснить, что произошло, но когда он провел уточненный вариант своего эксперимента в июне и июле 1958 г. с двумя маятниками, отстоящими друг от друга на 6 км, он обнаружил сходный эффект. Во время частичного солнечного затмения 22 октября 1959 г. Аллэ снова наблюдал такое же хаотическое вращение, но на этот раз о сходных наблюдениях сообщили трое румынских ученых, ничего не знавших о его работе.



Многие усомнились в его результатах главным образом потому, что ученым не нравятся необъяснимые вещи. Многие другие повторили эксперимент с противоречивыми результатами: некоторые не обнаружили никакого эффекта, поддающегося измерению, но большинство подтвердили результат в разных местах, включая одну подземную лабораторию [8].

Интересно заметить, что в 1988 г. Аллэ получил Нобелевскую премию в области экономики. Подобно Александру Тому и многим другим разрушителям научных парадигм, он совершил крупное открытие, работая за пределами своей главной области исследований. Поступками замечательных людей движет любопытство, не скованное формальностями традиционного образования.

Аллэ с сожалением говорит о противодействии, с которым приходится сталкиваться каждому первооткрывателю: «Любое революционное открытие в истории науки встречается с очень сильным противодействием... Релятивисты говорят, что я неправ, но не предоставляют никаких доказательств. Большинство из них даже не читали моих работ».

В 1970 г. Эрвин Сашл и Милдред Аллсн из Маунт-колледжа в штате Массачусетс изучили поведение маятника до, во время и после полного солнечного затмения. Их эксперимент несколько отличался от предыдущих, так как они пользовались торсионным маятником, который представляет собой массивный диск, подвешенный на проводе, прикрепленном к его центру. Вращение диска приводит к закручиванию провода. При высвобождении диск начинает вращаться сначала по часовой стрелке, а затем против часовой стрелки с определенными интервалами. Но во время полного затмения движение маятника заметно ускорилось. Ученые пришли к выводу, что теория гравитации нуждается в поправках.



В 1995 г. индийские ученые Д.К. Мишра и М.Б. Рао из Национального института геофизических исследований в Хайдарабаде наблюдали незначительное, но внезапное уменьшение силы тяготения при использовании крайне чувствительного и точного гравиметра во время солнечного затмения. Однако их результаты были неоднозначными. 22 июля 1990 г. во время солнечного затмения над Хельсинки финские геофизики не обнаружили возмущений в обычном движении маятника, однако в марте 1997 г. ученые наблюдали гравиметрические аномалии во время затмения в отдаленном районе Северо-Восточного Китая.

Тайна остается тайной, но ни одно научное учреждение не хочет тратить время и деньги для глубокого изучения этого феномена. Однако Томас Гуди, независимый исследователь из Брентфорда в Англии, решил самостоятельно изучить «эффект Аллэ» с использованием нескольких маятников во время затмения. Поскольку современное оборудование является гораздо более точным и чувствительным, чем существовавшее в 1954 г. (точность измерений возросла с 20 до 100 раз), он уверен в получении четких результатов.

В следующие несколько лет Гуди планирует объехать весь мир с 12 маятниками специальной конструкции. В мае 2004 г. он представил свой план на совещании Общества научных исследований в Лас-Вегасе и пригласил физиков присоединиться к нему. Как сообщается в статье журнала «Нью Сайентист», несколько специалистов воспользовались этой возможностью.

Гуди полагает, что аномалии возникают в тех случаях, когда наблюдатели находятся рядом с линией, соединяющей центры масс Солнца и Луны. Во время полного солнечного затмения линия Луна — Солнце пересекает поверхность Земли в двух точках, например, на противоположных сторонах земного шара. Эта теория объясняет, почему эксперимент во время солнечного затмения в Хельсинки не привел к желаемому результату. Гуди считает, что наблюдения в точке «антизатмения», где затмения не видно, могут обладать значительно большей ценностью.

Мы с интересом ожидаем завершения этого эксперимента. Надеемся, мы были правы в своем предположении, что маятники позволяют многое узнать о природе тяготения нашей планеты и ее гравитационных взаимоотношениях с Луной и Солнцем. Возможно ли, что Луна, закрывающая солнечный диск, служит экраном для непрерывного взаимодействия между Землей и Солнцем? Возможно ли, что, когда все три центра масс оказываются на одной линии, происходит еще неизвестное явление, имеющее физическую природу?

Древние строители, которые изобрели мегалитический ярд и способ его измерения, могли обладать гораздо более глубоким пониманием маятникового эффекта, чем мы. Наши недавние открытия указывают на то, что они хорошо разбирались во взаимосвязи между Землей, Луной и Солнцем.

Особая взаимосвязь

Наши первые находки в области мегалитической геометрии, описанные в книге «Первая цивилизация», побудили нас к изучению возможной связи между физическими параметрами Земли и древними системами мер и весов. Нас интересовало, является ли способ вычисления мегалитического ярда в некотором отношении специфическим для нашей планеты, существует ли какая-то связь между массой, скоростью вращения и орбитальным периодом, которая присуща только Земле, но не другим планетам?

Сначала мы применили принципы мегалитической геометрии ко всем планетам Солнечной системы. Нам не удалось выявить какой-либо закономерности: результаты выглядели совершенно случайными. К примеру, для Марса мы получили 19,78 мегалитического ярда на угловую секунду, а для Венеры такое же значение достигало 347,8. Мы также проверили крупные спутники других планет, но все оказалось тщетным. Хиллари Ньюбиген, старая знакомая Криса, предлодала сопоставить количество дней в орбитальном периоде каждой планеты с ее размерами, но результаты снова ни к чему не привели.

Потом мы обратились к Луне.

Результат можно было назвать каким угодно, только не бессмысленным. Мы взяли лунный радиус, определенный НАСА как 1738,1 км, и рассчитали окружность в метрах, получив на вид бессмысленное число 10 920 800. Затем мы перевели это расстояние в мегалитические ярды и получили не менее произвольную величину 13 162 900.

Затем мы применили правило мегалитической геометрии, разделив эту окружность на 366 градусов по 60 угловых минут и 6 угловых секунд. К нашему изумлению, на каждую угловую секунду для Луны приходилось по 100 мегалитических ярдов. Точность результата составляла 99,9%, что находится на границах погрешностей для таких расчетов.

Не странно ли, что мегалитический ярд оказался подходящей единицей измерения не только для Земли, но и для Луны?

Потом мы обратились к Солнцу. Поскольку мы знали, что Солнце в 400 раз больше Луны, то по логическим соображениям его размер должен был составлять 40 000 мегалитических ярдов на одну угловую секунду. Мы провели расчеты для верности и убедились в своей правоте.

Все это казалось очень странным. Мегалитические сооружения, построенные в Западной Европе, очевидно, использовались для наблюдения за движением Солнца и Луны, но как может единица длины, применявшаяся при строительстве этих сооружений, так замечательно вписываться в окружность этих небесных тел, а также Земли?

Совпадение? С учетом остальных странных фактов, связанных с Луной, было бы крайне неразумно списывать все на случайную игру природы. Разумеется, мы отдавали себе отчет в том, что числа, которыми мы пользуемся, подтверждают нашу гипотезу лишь в том случае, если они принадлежат к десятеричной системе счисления. Впоследствии мы еще вернемся к этому вопросу.

Если это не совпадение, можно выдвинуть два других предположения. Первое заключается в том, что в силу неизвестного закона астрофизики возникли некоторые взаимоотношения, которые были так или иначе замечены нашими предками в эпоху каменного века. Другое предположение — все это является результатом осознанного замысла.

Идея осознанного замысла выглядела безумной: здравый смысл подсказывал, что этого не может быть. Впрочем, мы не забывали о мудрых словах Альберта Эйнштейна: «Здравый смысл — это собрание предрассудков, которые человек приобретает к восемнадцатилетнему возрасту».

В возрасте 18 лет мы, как и все остальные, знали, что все в мире создано либо природой, либо руками человека. Но если отложить в сторону наши предрассудки о том, что возможно и что невозможно, можно найти логику даже в тех гипотезах, которые на первый взгляд кажутся безумными.

Разумно ли считать, что каменщики эпохи неолита оказались достаточно умными, чтобы измерить полярную окружность Земли и изобрести единицу измерения, связанную с нашей планетой? Эту задачу можно решить с помощью очень простых орудий, как было доказано еще древними греками, но могли ли наши предки на самом деле измерить окружность Луны и Солнца?

Или это имеет отношение к загадочному свойству маятников?

Этот вопрос представлял для нас огромный интерес, однако самая большая загадка, которую предстояло решить, заключалась в размерах и расположении Луны.


ГЛАВА ТРЕТЬЯ

ПРОИСХОЖДЕНИЕ ЛУНЫ

 

Лучше всего считать Луну ошибкой наблюдения — ее просто не существует!

Приписывается Ирвину Шапиро из Гарвардского центра астрофизических исследований

 

Один непреложный факт заключается в том, что Луна движется вокруг Земли. Она улыбается нам с ночного неба, но согласно всему, что знает наука, этого не должно быть.

Древние греки были великими собирателями знаний и исследователями законов природы. В V в. до н.э. Демокрит, создавший теорию о происхождении вещества из невидимых частиц, называемых атомами, обратился к другому концу масштабной шкалы и предположил, что темные отметины на лунном диске могут быть горами. Немного позднее Евдокс из Книда, который был астрономом и математиком, вычислил Саросский цикл затмений и таким образом смог предсказывать их наступление.

Около 260 г. до н.э. другой грек по имени Аристарх изобрел способ измерения размера Луны и ее расстояния от Земли. Его расчеты оказались неправильными, но крупный математик и астроном Гиппарх с острова Родос справился с этой задачей сто лет спустя. Он пользовался оригинальным методом измерений во время солнечного затмения. Затмение, о котором идет речь, было полным на Родосе, но лишь частичным в Александрии, которая находилась на расстоянии примерно 730 км. Заручившись поддержкой единомышленников, Гиппарх воспользовался известным расстоянием от Родоса до Александрии и разницей угловых величин полного и частичного затмения для определения истинного размера Луны и ее расстояния от Земли.

В конце I в. н.э. Плутарх написал короткое сочинение о Луне под названием «О лике лунного светила», где предположил, что темные отметины на лунном диске являются глубокими впадинами, не отражающими солнечный свет. Он считал, что на Луне есть горы и речные долины, и даже высказал предположение о ее обитаемости.

Хотя в V в. н.э. индийский астроном Ариабхата повторил и подтвердил эксперимент, проведенный Гиппархом, христианские власти того времени рассматривали Луну только в библейской трактовке, а любая информация о нашем ближайшем небесном соседе, противоречившая Священному Писанию, находилась под запретом. С победой христианства европейский мир вступил в эпоху, когда религия, а не наука служила руководством в жизни человека.

Железная хватка христианской церкви немного ослабла в XV—XVI вв.: эпоха Возрождения произвела глубокие и радикальные перемены в европейской культуре. Именно тогда впервые были сформулированы основные ценности современного мира. Осознание культурного возрождения само по себе было характерно для этой эпохи. Итальянские ученые и критики этого периода утверждали, что их эпоха избавилась от былого варварства и обрела вдохновение в культуре Древней Греции и Рима, наиболее соответствовавшей ей по духу. В конце XVI в. гениальный Гали-лео Галилей из Пизы, один из самых блестящих ученых эпохи Возрождения, проводил эксперименты с маятниками и падающими телами, изучал законы оптики и занимался всем, что захватывало его воображение, но, самое главное, большую часть своей зрелой жизни Галилей был ревностным астрономом.

В мае 1609 г. Галилей получил письмо от Паоло Сарпи с рассказом об оригинальной подзорной трубе, которую ему показал один голландец в Венеции. В апреле 1610 г. Галилей написал:

«Примерно десять месяцев назад до меня дошла весть о том, что некий Флеминг изобрел подзорную трубу, с помощью которой видимые объекты, находящиеся на большом отдалении от глаза наблюдателя, становятся четко видны как бы вблизи. Существует несколько сообщений об этом поистине замечательном эффекте; некоторые люди верят им, а другие отвергают. Через несколько дней это сообщение было подтверждено письмом, полученным мною от парижанина Жака Бадовера, что побудило меня всецело предаться изучению средств и способов изобретения такого инструмента. Вскоре мне удалось сделать это исходя из принципа рефракции».

На основании своих инженерных и математических навыков Галилей изготовил ряд телескопов с гораздо лучшими оптическими свойствами, чем у голландского инструмента. Его первый телескоп давал примерно четырехкратное увеличение и был сделан из линз, уже имевшихся в его распоряжении. Для улучшения качества своих телескопов Галилей научился изготавливать и полировать собственные линзы и в августе 1609 г. получил инструмент с восьми- или девятикратным увеличением. Он быстро осознал коммерческую и военную (особенно для целей мореплавания) ценность своего прибора, который он назвал perspicillum. В холодные ясные ночи зимы 1609 г. Галилей поворачивал свой телескоп к ночному небу, и ему удалось сделать несколько замечательных открытий.

Астрономические открытия Галилея были описаны в небольшой книге под названием «Звездные послания», изданной в Венеции в мае следующего года. Они произвели настоящую сенсацию. Помимо всего прочего Галилей утверждал, что Млечный Путь состоит из крошечных звезд и что он видел четыре небольших спутника Юпитера и горы на Луне.

Научные исследования Галилея легко могли пасть жертвой католической церкви, если бы его изображения Луны стали достоянием общественности. Согласно христианской традиции Солнце и Луна были безупречными незапятнанными сферами. Они просто не могли быть иными, поскольку их создал Господь, чьи творения не могли содержать изъянов. В конце концов папа римский поместил Галилея под постоянный домашний арест за богохульное утверждение, что Солнце находится в центре Солнечной системы. Возможно, Галилей знал о Луне гораздо больше, чем был готов признать публично.

Для объяснения элементов лунного ландшафта, не противоречащего церковным доктринам, в христианских странах был предложен целый ряд гипотез. Вероятно, наиболее популярной из них — по крайней мере в течение некоторого времени — было предположение о том, что Луна является совершенным зеркалом. Таким образом на поверхности Луны люди видели не элементы лунного ландшафта, а отражение элементов земного ландшафта. Никому не пришло в голову, что, поскольку7 Луна вращается вокруг Земли, отметины на лунном диске должны постоянно изменяться, так как Земля под ним не остается неизменной.

Другая гипотеза, принятая в некоторых кругах, заключалась в существовании таинственных испарений между Землей и Луной. Считалось, что образы, присутствовавшие в солнечном свете, отражались от этих «паров». Но самая популярная теория, не нарушавшая церковную доктрину, гласила, что вариации плотности Луны создают оптические иллюзии, которые мы видим как отметины на лунной поверхности. Это странное объяснение было безопасным, хотя едва ли могло убедить ученых того времени и определенно не производило никакого впечатления на Галилея.

После Галилея конструкция телескопов была значительно усовершенствована, и всем, кто изучал Луну, стало ясно, что она представляет собой сферу со скалистой и неровной поверхностью. По мере того как церковь постепенно утрачивала свою власть над научной мыслью, многие старые представления о Луне становились неприемлемыми. Но никто не имел представления, откуда взялась Луна и почему она движется именно по такой орбите вокруг Земли.

Вскоре тема Луны приобрела важное значение для астрономов. Империи, создаваемые Британией, Францией и Испанией, неуклонно расширялись. Это требовало длительных морских путешествий и привело к настойчивым поискам определения долготы на корабле, который находится в море. Довольно легко установить положение на поверхности планеты по линии север — юг (широта), но долгое время было невозможно узнать, где вы находитесь на линии восток — запад (долгота). К примеру, в Северном полушарии широту можно быстро вычислить, измерив угловое расстояние между горизонтом и Полярной звездой. Этот угол также определяет положение наблюдателя к северу от экватора.

Проблема долготы в конце концов была решена с помощью чрезвычайно точных часов на борту корабля, установленных на время отплытия. Было нетрудно вычислить разницу между местным временем, скажем в полдень, и временем в порту отплытия. После этого определение истинного положения наблюдателя на земной поверхности сводилось к нескольким операциям сложения и вычитания. Тем не менее прошло много десятилетий, прежде чем удалось изготовить достаточно точные часы. Между тем астрономы искали другие способы определения долготы — не в последнюю очередь из-за баснословного приза, предложенного тому, кто сможет решить проблему. Многие из них обратились к Луне как к надежному средству определения долготы.

Астрономы предположили, что если бы были составлены действительно точные таблицы положения Луны по отношению к фоновым звездам, то можно было бы правильно определять время в порту отплытия. Луна находится довольно близко к Земле и быстро вращается вокруг нее, двигаясь по небосводу примерно на 13° в день. Наблюдение за Луной было довольно простым способом для того, чтобы установить местное время, а затем проделать необходимые расчеты для определения положения наблюдателя.

Однако таблицы, необходимые для выполнения такой задачи, были очень сложными, и вскоре после того как появились точные хронометры, было решено отказаться от Луны как средства для определения долготы. Но желание решить эту проблему и потенциальная возможность ее решения означали, что Луна привлекает большое внимание астрономов. В XVII в. начали появляться очень точные карты лунной поверхности.

Первое логическое объяснение происхождения Луны было выдвинуто в XIX в. Джордж Дарвин, сын Чарлза Дарвина, автора теории естественного отбора, был известным и авторитетным астрономом, который тщательно изучал Луну и в 1878 г. выступил с так называемой теорией разделения. По всей видимости, Джордж Дарвин был первым астрономом, установившим, что Луна отдаляется от Земли. На основе скорости расхождения двух небесных тел Дж. Дарвин предположил, что когда-то Земля и Луна составляли единое целое. В далеком прошлом эта расплавленная вязкая сфера очень быстро вращалась вокруг своей оси, совершая один полный оборот примерно за пять с половиной часов.

Дарвин предположил, что в дальнейшем приливное воздействие Солнца стало причиной так называемого разделения: кусок расплавленной Земли размером с Луну отделился от главной массы и в конце концов занял свое положение на орбите. Эта теория выглядела вполне разумно и стала главенствующей в начале XX в. Она подверглась серьезной атаке лишь в 1920-х, когда британский астроном Гарольд Джеф-фрис показал, что вязкость Земли в полурасплавленном состоянии препятствовала бы возникновению достаточно мощной вибрации, которая могла привести к разделению двух небесных тел.

Вторая теория, некогда убедившая ряд специалистов, называлась аккреционной теорией. Она гласила, что вокруг уже сформировавшейся Земли постепенно аккумулировался диск из плотных частиц, напоминающий кольца Сатурна. Предполагалось, что частицы этого диска в конечном счете объединились и образовали Луну. Существует несколько причин, в силу которых такое объяснение не может быть удовлетворительным. Одной из главных является угловой момент движения системы Земля — Луна, который никогда не стал бы таким, как он есть, если бы Луна образовалась из аккреционного диска. Существуют также затруднения, связанные с образованием океанов расплавленной магмы на «новорожденной» Луне.

Третья теория о происхождении Луны появилась примерно в то время, когда были запущены первые лунные зонды; она получила название теории целостного захвата. Предполагалось, что Луна возникла вдалеке от Земли и стала блуждающим небесным телом, которое попросту было захвачено земным тяготением и вышло на орбиту вокруг Земли.

Теперь эта теория тоже вышла из моды по нескольким причинам. Соотношение изотопов кислорода в горных породах на Земле и на Луне убедительно доказывает, что они возникли на одном расстоянии от Солнца, чего не могло быть в том случае, если бы Луна сформировалась в другом месте. Существуют также непреодолимые трудности в попытке построения модели, в соответствии с которой небесное тело размером с Луну могло бы выйти на стационарную орбиту вокруг Земли. Такой огромный объект не мог аккуратно «подплыть» к Земле на малой скорости, словно супертанкер, швартующийся к пристани; он почти неизбежно должен был врезаться в Землю на большой скорости или пролететь рядом с ней и устремиться дальше.

К середине 1970-х все предыдущие теории формирования Луны по той или иной причине столкнулись с трудностями. Это привело к созданию практически немыслимой ситуации, когда прославленные эксперты могли публично признать, что они просто не знают, как или почему Луна оказалась на своем месте. Известный научный автор Уильям К. Хартманн, ведущий ученый Института планетологии в Таксоне, штат Аризона, сказал в своей книге (1986 г.) «Происхождение Луны»:

«Ни астронавты «Аполлона», ни луноходы, ни вся королевская рать не смогли собрать достаточно информации для объяснения условий формирования Луны» [9].

Из этой неопределенности родилась новая теория, которая в настоящее время считается общепринятой, несмотря на некоторые серьезные вопросы. Она известна как теория «большого столкновения».

Идея возникла в Советском Союзе в 60-х гг. у русского ученого B.C. Савронова, который рассматривал возможность возникновения планет из миллионов астероидов разного размера, называемых планетзималями.

В ходе независимого исследования Хартманн вместе со своим коллегой Д.Р. Дэвисом предположил, что Луна образовалась в результате столкновения двух планетных тел, одним из которых была Земля, а другим — блуждающая планета, размером не уступавшая Марсу. Хартманн и Дэвис полагали, что две планеты столкнулись специфическим образом, в результате чего произошли выбросы вещества из мантии обоих небесных тел. Это вещество было выброшено на орбиту, где постепенно объединилось и уплотнилось для формирования Луны [10].

На первый взгляд, такое предположение имеет много достоинств. Прежде всего оно решает главный вопрос, возникший после доставки на Землю образцов лунной породы: почему состав Луны так сходен с составом Земли, но лишь частично?

Анализ лунных пород показал значительное сходство с породами, образующими мантию Земли, однако Луна гораздо менее массивна, чем Земля, с учетом их относительного размера (Земля лишь в 3,66 раза больше Луны, но имеет в 81 раз большую массу). Было ясно, что на Луне отсутствуют многие тяжелые элементы, содержащиеся в недрах Земли, и теория «большого столкновения» как будто объясняла причину этого явления. Земля и блуждающая планета столкнулись очень необычным образом. Хотя в конечном счете они образовали одну планету, предполагалось, что сначала они столкнулись, разошлись в стороны, а потом снова соединились. Компьютерное моделирование показало, что при этих специфических обстоятельствах возможен выброс мантийного материала из-под корового слоя обоих небесных тел.

Хотя эта теория постепенно овладела умами, сначала она казалась такой невероятной, что была отвергнута в целом. Но дальнейшие исследования показали, что даже такой маловероятный сценарий мог иметь место. В 1983 г. состоялось международное совещание в Коне (Гавайские острова), целью которого была попытка решения проблем, связанных с происхождением Луны. Именно на этом совещании теория «большого столкновения» начала завоевывать очки. Собственные размышления Хартманна наряду с мнениями других ученых, присутствовавших на совещании, образовали ядро книги «Происхождение Луны» (1986) под редакцией самого Хартманна.

Между тем некоторые эксперты создали компьютерные модели, подкреплявшие теорию «большого столкновения». Наиболее убедительной из них была модель доктора Робин Кенап, которая сейчас является заместителем директора департамента космических исследований в Колорадо. Ее научная диссертация была посвящена происхождению Луны и, в частности, теории «большого столкновения». Первоначальные расчеты привели ее к выводу, что предполагаемый удар должен был привести к образованию целого роя мелких спутников, а не одной Луны, но дальнейшее компьютерное моделирование в 1997 г. позволило создать такой прототип столкновения, результатом которого явилось формирование Луны.

Несмотря на то что теория «большого столкновения» теперь принята большинством специалистов, она вызывает много вопросов. Как признает сама Робин Кенап и другие исследователи, такое мощное столкновение должно было ускорить вращение Земли до уровня, несопоставимого с нынешней ситуацией. Единственный способ решения этой проблемы, по ее мнению, заключается в гипотезе о втором крупном столкновении, названном «большой удар II». На этот раз предполагается, что второе столкновение произошло лишь через несколько тысяч лет после первого, но другой объект нанес удар с противоположного направления и таким образом погасил огромную скорость вращения Земли после первого катаклизма. Такое «сбалансированное» двойное столкновение выглядит крайне маловероятным. Оно кажется похожим на жест отчаяния.

Кенап сама недовольна гипотезой «большого удара II» и надеется модифицировать первоначальную теорию таким образом, чтобы она объясняла нынешнюю скорость вращения Земли.

Для того чтобы всерьез относиться к теории «большого столкновения», необходимо преодолеть еще одно большое препятствие. Когда американские астронавты и советские автоматические зонды доставили горные породы с Луны, их подвергли всевозможным анализам. Экспериментальный факт, покончивший с теорией «гравитационного захвата», вызывает большое сомнение и в теории «большого столкновения». Было установлено, что соотношение изотопов кислорода в земных и лунных породах практически идентично. Этот факт имеет серьезные последствия: соотношение может быть идентично лишь в том случае, если Луна и Земля образовались на одинаковом расстоянии от Солнца. Это означает, что планета размером с Марс должна была двигаться по одной орбите с Землей и что она каким-то образом существовала в течение многих миллионов лет до столкновения.

Вероятность такой ситуации ничтожно мала и создает другие затруднения. Нынешний наклон земной оси на 23° по отношению к плоскости ее орбиты вокруг Солнца принято считать результатом катастрофического столкновения, но любое небесное тело размером с Марс, которое двигалось бы по орбите, сходной с орбитой Земли, не могло иметь достаточного момента движения, чтобы так сильно наклонить ось вращения Земли. Либо блуждающая планета появилась из-за пределов Солнечной системы и, следовательно, двигалась с чрезвычайно большой скоростью, либо она должна быть по меньшей мере в три раза больше Марса, что не вписывается ни в какие компьютерные модели.

Некоторые другие проблемы перечислялись Джеком Дж. Лиссауэром, известным ученым из Эймсовского центра НАСА, в статье, которую он написал для журнала «Нейчур» в 1997 г. [11]. Говорят, что Лиссау-эр любил цитировать шутливое замечание другого ученого, Ирвина Шапиро из Гарвардского центра астрофизических исследований: «Лучшее объяснение для Луны — это ошибка наблюдения. Ее вообще не существует!»

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.