Сделай Сам Свою Работу на 5

Стандартный массив – это вектор





Хотя встроенный массив формально и обеспечивает механизм контейнера, он, как мы видели выше, не поддерживает семантику абстракции контейнера. До принятия стандарта C++ для программирования на таком уровне мы должны были либо приобрести нужный класс, либо реализовать его самостоятельно. Теперь же класс массива является частью стандартной библиотеки C++. Только называется он не массив, а вектор.

Разумеется, вектор реализован в виде шаблона класса. Так, мы можем написать

vector<int> ivec(10);

vector<string> svec(10);

Есть два существенных отличия нашей реализации шаблона класса Array от реализации шаблона класса vector. Первое отличие состоит в том, что вектор поддерживает как присваивание значений существующим элементам, так и вставку дополнительных элементов, то есть динамически растет во время выполнения, если программист решил воспользоваться этой его возможностью. Второе отличие более радикально и отражает существенное изменение парадигмы проектирования. Вместо того чтобы поддержать большой набор операций-членов, применимых к вектору, таких, как sort(), min(), max(), find()и так далее, класс vector предоставляет минимальный набор: операции сравнения на равенство и на меньше, size() и empty(). Более общие операции, перечисленные выше, определены как независимые обобщенные алгоритмы.



Для использования класса vector мы должны включить соответствующий заголовочный файл.

#include <vector>

  // разные способы создания объектов типа vector vector<int> vec0; // пустой вектор   const int size = 8; const int value = 1024;   // вектор размером 8 // каждый элемент инициализируется 0 vector<int> vec1(size);   // вектор размером 8 // каждый элемент инициализируется числом 1024 vector<int> vec2(size,value);   // вектор размером 4 // инициализируется числами из массива ia int ia[4] = { 0, 1, 1, 2 }; vector<int> vec3(ia,ia+4);   // vec4 - копия vec2

vector<int> vec4(vec2);

Так же, как наш класс Array, класс vector поддерживает операцию доступа по индексу. Вот пример перебора всех элементов вектора:

#include <vector>

extern int getSize();

 

void mumble()

{

int size = getSize();

vector<int> vec(size);

 

for (int ix=0; ix<size; ++ix)

vec[ix] = ix;

 

// ...

}

Для такого перебора можно также использовать итераторную пару. Итератор – это объект класса, поддерживающего абстракцию указательного типа. В шаблоне класса vector определены две функции-члена – begin() и end(), устанавливающие итератор соответственно на первый элемент вектора и на элемент, который следует за последним. Вместе эти две функции задают диапазон элементов вектора. Используя итератор, предыдущий пример можно переписать таким образом:



#include <vector>

extern int getSize();

 

void mumble()

{

int size = getSize();

vector<int> vec(size);

 

vector<int>::iterator iter = vec.begin();

 

for (int ix=0; iter!=vec.end(); ++iter, ++ix)

*iter = ix;

 

// ...

}

Определение переменной iter

vector<int>::iterator iter = vec.begin();

инициализирует ее адресом первого элемента вектора vec. iterator определен с помощью typedef в шаблоне класса vector, содержащего элементы типа int. Операция инкремента

++iter

перемещает итератор на следующий элемент вектора. Чтобы получить сам элемент, нужно применить операцию разыменования:

*iter

В стандартной библиотеке С++ имеется поразительно много функций, работающих с классом vector, но определенных не как функции-члены класса, а как набор обобщенных алгоритмов. Вот их неполный перечень:

алгоритмы поиска: find(), find_if(), search(), binary_search(), count(), count_if();

алгоритмы сортировки и упорядочения: sort(), partial_sort(), merge(), partition(), rotate(), reverse(), random_shuffle();

алгоритмы удаления: unique(), remove();

численные алгоритмы: accumulate(), partial_sum(), inner_product(), adjacent_difference();

алгоритмы генерации и изменения последовательности: generate(), fill(), transform(), copy(), for_each();

алгоритмы сравнения: equal(), min(), max().

В число параметров этих обобщенных алгоритмов входит итераторная пара, задающая диапазон элементов вектора, к которым применяется алгоритм. Скажем, чтобы упорядочить все элементы некоторого вектора ivec, достаточно написать следующее:



sort ( ivec.begin(), ivec.end() );

Чтобы применить алгоритм sort() только к первой половине вектора, мы напишем:

sort ( ivec.begin(), ivec.begin() + ivec.size()/2 );

Роль итераторной пары может играть и пара указателей на элементы встроенного массива. Пусть, например, нам дан массив:

int ia[7] = { 10, 7, 9, 5, 3, 7, 1 };

Упорядочить весь массив можно вызовом алгоритма sort():

sort ( ia, ia+7 );

Так можно упорядочить первые четыре элемента:

sort ( ia, ia+4 );

Для использования алгоритмов в программу необходимо включить заголовочный файл

#include <algorithm>

Ниже приведен пример программы, использующей разнообразные алгоритмы в применении к объекту типа vector:

#include <vector> #include <algorithm> #include <iostream>   int ia[ 10 ] = { 51, 23, 7, 88, 41, 98, 12, 103, 37, 6 };   int main() { vector< int > vec( ia, ia+10 ); vector<int>::iterator it = vec.begin(), end_it = vec.end();   cout << "Начальный массив: "; for ( ; it != end_it; ++ it ) cout << *it << ' '; cout << "\n";   // сортировка массива sort( vec.begin(), vec.end() );   cout << "упорядоченный массив: "; it = vec.begin(); end_it = vec.end(); for ( ; it != end_it; ++ it ) cout << *it << ' '; cout << "\n\n";   int search_value; cout << "Введите значение для поиска: "; cin >> search_value;   // поиск элемента vector<int>::iterator found; found = find( vec.begin(), vec.end(), search_value );   if ( found != vec.end() ) cout << "значение найдено!\n\n"; else cout << "значение найдено!\n\n";   // инвертирование массива reverse( vec.begin(), vec.end() );   cout << "инвертированный массив: "; it = vec.begin(); end_it = vec.end();   for ( ; it != end_it; ++ it ) cout << *it << ' '; cout << endl;  

}

Стандартная библиотека С++ поддерживает и ассоциативные массивы. Ассоциативный массив – это массив, элементы которого можно индексировать не только целыми числами, но и значениями любого типа. В терминологии стандартной библиотеки ассоциативный массив называется отображением (map). Например, телефонный справочник может быть представлен в виде ассоциативного массива, где индексами служат фамилии абонентов, а значениями элементов – телефонные номера:

#include <map>

#include <string>

#include "TelephoneNumber.h"

 

map<string, telephoneNum> telephone_directory;

(Классы векторов, отображений и других контейнеров в подробностях описываются в главе 6. Мы попробуем реализовать систему текстового поиска, используя эти классы. В главе 12 рассмотрены обобщенные алгоритмы, а в Приложении приводятся примеры их использования.)

В данной главе были очень бегло рассмотрены основные аспекты программирования на С++, основы объектно-ориентированного подхода применительно к данному языку и использование стандартной библиотеки. В последующих главах мы разберем эти вопросы более подробно и систематично.

Упражнение 2.22

Поясните результаты каждого из следующих определений вектора:

string pals[] = { "pooh", "tiger", "piglet", "eeyore", "kanga" };   (a) vector<string> svec1(pals,pals+5); (b) vector<int> ivec1(10); (c) vector<int> ivec2(10,10); (d) vector<string> svec2(svec1); (e) vector<double> dvec;

Упражнение 2.23

Напишите две реализации функции min(), объявление которой приведено ниже. Функция должна возвращать минимальный элемент массива. Используйте цикл for и перебор элементов с помощью

индекса

итератора

template <class elemType>

elemType min (const vector<elemType> &vec);


Часть II

Основы языка

Код программы и данные, которыми программа манипулирует, записываются в память компьютера в виде последовательности битов. Бит – это мельчайший элемент компьютерной памяти, способная хранить либо 0, либо 1. На физическом уровне это соответствует электрическому напряжению, которое, как известно, либо есть , либо нет. Посмотрев на содержимое памяти компьютера, мы увидим что-нибудь вроде:

00011011011100010110010000111011 ...

Очень трудно придать такой последовательности смысл, но иногда нам приходится манипулировать и подобными неструктурированными данными (обычно нужда в этом возникает при программировании драйверов аппаратных устройств). С++ предоставляет набор операций для работы с битовыми данными. (Мы поговорим об этом в главе 4.)

Как правило, на последовательность битов накладывают какую-либо структуру, группируя биты в байты и слова. Байт содержит 8 бит, а слово – 4 байта, или 32 бита. Однако определение слова может быть разным в разных операционных системах. Сейчас начинается переход к 64-битным системам, а еще недавно были распространены системы с 16-битными словами. Хотя в подавляющем большинстве систем размер байта одинаков, мы все равно будем называть эти величины машинно-зависимыми.

Так выглядит наша последовательность битов, организованная в байты.

Рис 1.

Адресуемая машинная память

Теперь мы можем говорить, например, о байте с адресом 1040 или о слове с адресом 1024 и утверждать, что байт с адресом 1032 не равен байту с адресом 1040.

Однако мы не знаем, что же представляет собой какой-либо байт, какое-либо машинное слово. Как понять смысл тех или иных 8 бит? Для того чтобы однозначно интерпретировать значение этого байта (или слова, или другого набора битов), мы должны знать тип данных, представляемых данным байтом.

С++ предоставляет набор встроенных типов данных: символьный, целый, вещественный – и набор составных и расширенных типов: строки, массивы, комплексные числа. Кроме того, для действий с этими данными имеется базовый набор операций: сравнение, арифметические и другие операции. Есть также операторы переходов, циклов, условные операторы. Эти элементы языка С++ составляют тот набор кирпичиков, из которых можно построить систему любой сложности. Первым шагом в освоении С++ станет изучение перечисленных базовых элементов, чему и посвящена часть II данной книги.

Глава 3 содержит обзор встроенных и расширенных типов, а также механизмов, с помощью которых можно создавать новые типы. В основном это, конечно, механизм классов, представленный в разделе 2.3. В главе 4 рассматриваются выражения, встроенные операции и их приоритеты, преобразования типов. В главе 5 рассказывается об инструкциях языка. И наконец глава 6 представляет стандартную библиотеку С++ и контейнерные типы – вектор и ассоциативный массив.

3. Типы данных С++

В этой главе приводится обзор встроенных, или элементарных, типов данных языка С++. Она начинается с определения литералов, таких, как 3.14159 или pi, а затем вводится понятие переменной, или объекта, который должен принадлежать к одному из типов данных. Оставшаяся часть главы посвящена подробному описанию каждого встроенного типа. Кроме того, приводятся производные типы данных для строк и массивов, предоставляемые стандартной библиотекой С++. Хотя эти типы не являются элементарными, они очень важны для написания настоящих программ на С++, и нам хочется познакомить с ними читателя как можно раньше. Мы будем называть такие типы данных расширением базовых типов С++.

Литералы

В С++ имеется набор встроенных типов данных для представления целых и вещественных чисел, символов, а также тип данных “символьный массив”, который служит для хранения символьных строк. Тип char служит для хранения отдельных символов и небольших целых чисел. Он занимает один машинный байт. Типы short, int и long предназначены для представления целых чисел. Эти типы различаются только диапазоном значений, которые могут принимать числа, а конкретные размеры перечисленных типов зависят от реализации. Обычно short занимает половину машинного слова, int – одно слово, long – одно или два слова. В 32-битных системах int и long, как правило, одного размера.

Типы float, double и long double предназначены для чисел с плавающей точкой и различаются точностью представления (количеством значащих разрядов) и диапазоном. Обычно float (одинарная точность) занимает одно машинное слово, double (двойная точность) – два, а long double (расширенная точность) – три.

char, short, int и long вместе составляют целые типы, которые, в свою очередь, могут быть знаковыми (signed) и беззнаковыми (unsigned). В знаковых типах самый левый бит служит для хранения знака (0 – плюс, 1 – минус), а оставшиеся биты содержат значение. В беззнаковых типах все биты используются для значения. 8-битовый тип signed char может представлять значения от -128 до 127, а unsigned char – от 0 до 255.

Когда в программе встречается некоторое число, например 1, то это число называется литералом, или литеральной константой. Константой, потому что мы не можем изменить его значение, и литералом, потому что его значение фигурирует в тексте программы. Литерал является неадресуемой величиной: хотя реально он, конечно, хранится в памяти машины, нет никакого способа узнать его адрес. Каждый литерал имеет определенный тип. Так, 0 имеет тип int, 3.14159 – тип double.

Литералы целых типов можно записать в десятичном, восьмеричном и шестнадцатеричном виде. Вот как выглядит число 20, представленное десятичным, восьмеричным и шестнадцатеричным литералами:

20 // десятичный

024 // восьмеричный

0х14 // шестнадцатеричный

Если литерал начинается с 0, он трактуется как восьмеричный, если с 0х или 0Х, то как шестнадцатеричный. Привычная запись рассматривается как десятичное число.

По умолчанию все целые литералы имеют тип signed int. Можно явно определить целый литерал как имеющий тип long, приписав в конце числа букву L (используется как прописная L, так и строчная l, однако для удобства чтения не следует употреблять строчную: ее легко перепутать с 1). Буква U (или u) в конце определяет литерал как unsigned int, а две буквы – UL или LU – как тип unsigned long. Например:

 

128u 1024UL 1L 8Lu

 

Литералы, представляющие действительные числа, могут быть записаны как с десятичной точкой, так и в научной (экспоненциальной) нотации. По умолчанию они имеют тип double. Для явного указания типа float нужно использовать суффикс F или f, а для long double - L или l, но только в случае записи с десятичной точкой. Например:

 

3.14159F 0/1f 12.345L 0.0

3el 1.0E-3E 2. 1.0L

 

Слова true и false являются литералами типа bool.

Представимые литеральные символьные константы записываются как символы в одинарных кавычках. Например:

 

'a' '2' ',' ' ' (пробел)

 

Специальные символы (табуляция, возврат каретки) записываются как escape-последовательности . Определены следующие такие последовательности (они начинаются с символа обратной косой черты):

 

новая строка \n

горизонтальная табуляция \t

забой \b

вертикальная табуляция \v

возврат каретки \r

прогон листа \f

звонок \a

обратная косая черта \\

вопрос \?

одиночная кавычка \'

двойная кавычка \"

 

escape-последовательность общего вида имеет форму \ooo, где ooo – от одной до трех восьмеричных цифр. Это число является кодом символа. Используя ASCII-код, мы можем написать следующие литералы:

 

\7 (звонок) \14 (новая строка)

\0 (null) \062 ('2')

 

Символьный литерал может иметь префикс L (например, L'a'), что означает специальный тип wchar_t – двухбайтовый символьный тип, который применяется для хранения символов национальных алфавитов, если они не могут быть представлены обычным типом char, как, например, китайские или японские буквы.

Строковый литерал – строка символов, заключенная в двойные кавычки. Такой литерал может занимать и несколько строк, в этом случае в конце строки ставится обратная косая черта. Специальные символы могут быть представлены своими escape-последовательностями. Вот примеры строковых литералов:

 

"" (пустая строка)

"a"

"\nCC\toptions\tfile.[cC]\n"

"a multi-line \

string literal signals its \

continuation with a backslash"

 

Фактически строковый литерал представляет собой массив символьных констант, где по соглашению языков С и С++ последним элементом всегда является специальный символ с кодом 0 (\0).

Литерал 'A' задает единственный символ А, а строковый литерал "А" – массив из двух элементов: 'А' и \0 (пустого символа).

Раз существует тип wchar_t, существуют и литералы этого типа, обозначаемые, как и в случае с отдельными символами, префиксом L:

L"a wide string literal"

Строковый литерал типа wchar_t – это массив символов того же типа, завершенный нулем.

Если в тесте программы идут подряд два или несколько строковых литералов (типа char или wchar_t), компилятор соединяет их в одну строку. Например, следующий текст

"two" "some"

породит массив из восьми символов – twosome и завершающий нулевой символ. Результат конкатенации строк разного типа не определен. Если написать:

// this is not a good idea

"two" L"some"

то на каком-то компьютере результатом будет некоторая осмысленная строка, а на другом может оказаться нечто совсем иное. Программы, использующие особенности реализации того или иного компилятора или операционной системы, являются непереносимыми. Мы крайне не рекомендуем пользоваться такими конструкциями.

Упражнение 3.1

Объясните разницу в определениях следующих литералов:

(a) 'a', L'a', "a", L"a" (b) 10, 10u, 10L, 10uL, 012, 0*C

(c) 3.14, 3.14f, 3.14L

Упражнение 3.2

Какие ошибки допущены в приведенных ниже примерах?

(a) "Who goes with F\144rgus?\014" (b) 3.14e1L (c) "two" L"some" (d) 1024f (e) 3.14UL (f) "multiple line

comment"

Переменные

Представим себе, что мы решаем задачу возведения 2 в степень 10. Пишем:

#include <iostream>

 

int main() {

// a first solution

cout << "2 raised to the power of 10: ";

cout << 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2;

cout << endl;

return 0;

}

Задача решена, хотя нам и пришлось неоднократно проверять, действительно ли 10 раз повторяется литерал 2. Мы не ошиблись в написании этой длинной последовательности двоек, и программа выдала правильный результат – 1024.

Но теперь нас попросили возвести 2 в 17 степень, а потом в 23. Чрезвычайно неудобно каждый раз модифицировать текст программы! И, что еще хуже, очень просто ошибиться, написав лишнюю двойку или пропустив ее... А что делать, если нужно напечатать таблицу степеней двойки от 0 до 15? 16 раз повторить две строки, имеющие общий вид:

cout << "2 в степени X\t";

cout << 2 * ... * 2;

где Х последовательно увеличивается на 1, а вместо отточия подставляется нужное число литералов?

Да, мы справились с задачей. Заказчик вряд ли будет вникать в детали, удовлетворившись полученным результатом. В реальной жизни такой подход достаточно часто срабатывает, более того, бывает оправдан: задача решена далеко не самым изящным способом, зато в желаемый срок. Искать более красивый и грамотный вариант может оказаться непрактичной тратой времени.

В данном случае “метод грубой силы” дает правильный ответ, но как же неприятно и скучно решать задачу подобным образом! Мы точно знаем, какие шаги нужно сделать, но сами эти шаги просты и однообразны.

Привлечение более сложных механизмов для той же задачи, как правило, значительно увеличивает время подготовительного этапа. Кроме того, чем более сложные механизмы применяются, тем больше вероятность ошибок. Но даже несмотря на неизбежные ошибки и неверные ходы, применение “высоких технологий” может принести выигрыш в скорости разработки, не говоря уже о том, что эти технологии значительно расширяют наши возможности. И – что интересно! – сам процесс решения может стать привлекательным.

Вернемся к нашему примеру и попробуем “технологически усовершенствовать” его реализацию. Мы можем воспользоваться именованным объектом для хранения значения степени, в которую нужно возвести наше число. Кроме того, вместо повторяющейся последовательности литералов применим оператор цикла. Вот как это будет выглядеть:

#include <iostream>   int main() { // objects of type int int value = 2; int pow = 10;   cout << value << " в степени " << pow << ": \t";   int res = 1;   // оператор цикла: // повторить вычисление res // до тех пор пока cnt не станет больше pow for ( int cnt=1; cnt <= pow; ++cnt ) res = res * value;   cout << res << endl;

}

value, pow, res и cnt – это переменные, которые позволяют хранить, модифицировать и извлекать значения. Оператор цикла for повторяет строку вычисления результата pow раз.

Несомненно, мы создали гораздо более гибкую программу. Однако это все еще не функция. Чтобы получить настоящую функцию, которую можно использовать в любой программе для вычисления степени числа, нужно выделить общую часть вычислений, а конкретные значения задать параметрами.

int pow( int val, int exp )

{

for ( int res = 1; exp > 0; --exp )

res = res * val;

return res;

}

Теперь получить любую степень нужного числа не составит никакого труда. Вот как реализуется последняя наша задача – напечатать таблицу степеней двойки от 0 до 15:

#include <iostream> extern int pow(int,int);

int main()

{

int val = 2;

int exp = 15;

 

cout << "Степени 2\n";

for ( int cnt=0; cnt <= exp; ++cnt )

cout << cnt << ": "

<< pow( val, cnt ) << endl;

 

return 0;

}

Конечно, наша функция pow() все еще недостаточно обобщена и недостаточно надежна. Она не может оперировать вещественными числами, неправильно возводит числа в отрицательную степень – всегда возвращает 1. Результат возведения большого числа в большую степень может не поместиться в переменную типа int, и тогда будет возвращено некоторое случайное неправильное значение. Видите, как непросто, оказывается, писать функции, рассчитанные на широкое применение? Гораздо сложнее, чем реализовать конкретный алгоритм, направленный на решение конкретной задачи.

Что такое переменная

Переменная, или объект – это именованная область памяти, к которой мы имеем доступ из программы; туда можно помещать значения и затем извлекать их. Каждая переменная С++ имеет определенный тип, который характеризует размер и расположение этой области памяти, диапазон значений, которые она может хранить, и набор операций, применимых к этой переменной. Вот пример определения пяти объектов разных типов:

int student_count; double salary; bool on_loan; strins street_address;

char delimiter;

Переменная, как и литерал, имеет определенный тип и хранит свое значение в некоторой области памяти. Адресуемость – вот чего не хватает литералу. С переменной ассоциируются две величины:

· собственно значение, или r-значение (от read value – значение для чтения), которое хранится в этой области памяти и присуще как переменной, так и литералу;

· значение адреса области памяти, ассоциированной с переменной, или l-значение (от location value – значение местоположения) – место, где хранится r-значение; присуще только объекту.

В выражении

ch = ch - '0';

переменная ch находится и слева и справа от символа операции присваивания. Справа расположено значение для чтения (ch и символьный литерал '0'): ассоциированные с переменной данные считываются из соответствующей области памяти. Слева – значение местоположения: в область памяти, соотнесенную с переменной ch, помещается результат вычитания. В общем случае левый операнд операции присваивания должен быть l-значением. Мы не можем написать следующие выражения:

// ошибки компиляции: значения слева не являются l-значениями   // ошибка: литерал - не l-значение 0 = 1;   // ошибка: арифметическое выражение - не l-значение

salary + salary * 0.10 = new_salary;

Оператор определения переменной выделяет для нее память. Поскольку объект имеет только одну ассоциированную с ним область памяти, такой оператор может встретиться в программе только один раз. Если же переменная, определенная в одном исходном файле, должна быть использована в другом, появляются проблемы. Например:

// файл module0.C

// определяет объект fileName

string fileName;

// ... присвоить fileName значение

 

// файл module1.C

// использует объект fileName

 

// увы, не компилируется:

// fileName не определен в module1.C

ifstream input_file( fileName );

С++ требует, чтобы объект был известен до первого обращения к нему. Это вызвано необходимостью гарантировать правильность использования объекта в соответствии с его типом. В нашем примере модуль module1.C вызовет ошибку компиляции, поскольку переменная fileName не определена в нем. Чтобы избежать этой ошибки, мы должны сообщить компилятору об уже определенной переменной fileName. Это делается с помощью инструкции объявления переменной:

// файл module1.C

// использует объект fileName

 

// fileName объявляется, то есть программа получает

// информацию об этом объекте без вторичного его определения

extern string fileName;

 

ifstream input_file( fileName )

Объявление переменной сообщает компилятору, что объект с данным именем, имеющий данный тип, определен где-то в программе. Память под переменную при ее объявлении не отводится. (Ключевое слово extern рассматривается в разделе 8.2.)

Программа может содержать сколько угодно объявлений одной и той же переменной, но определить ее можно только один раз. Такие объявления удобно помещать в заголовочные файлы, включая их в те модули, которые этого требуют. Так мы можем хранить информацию об объектах в одном месте и обеспечить удобство ее модификации в случае надобности. (Более подробно о заголовочных файлах мы поговорим в разделе 8.2.)

Имя переменной

Имя переменной, или идентификатор, может состоять из латинских букв, цифр и символа подчеркивания. Прописные и строчные буквы в именах различаются. Язык С++ не ограничивает длину идентификатора, однако пользоваться слишком длинными именами типа gosh_this_is_an_impossibly_name_to_type неудобно.

Некоторые слова являются ключевыми в С++ и не могут быть использованы в качестве идентификаторов; в таблице 3.1 приведен их полный список.

 

Таблица 3.1. Ключевые слова C++

asm auto bool break case
catch char class const const_cast
continue default delete do double
dynamic_cast else enum explicit export
extern false float for friend
goto if inline int long
mutable namespace new operator private
protected public register reinterpret_cast return
short signed sizeof static static_cast
struct switch template this throw
true try typedef typeid typename
union unsigned using virtual void
volatile wchar_t while    

 

Чтобы текст вашей программы был более понятным, мы рекомендуем придерживаться общепринятых соглашений об именах объектов:

· имя переменной обычно пишется строчными буквами, например index (для сравнения: Index – это имя типа, а INDEX – константа, определенная с помощью директивы препроцессора #define);

· идентификатор должен нести какой-либо смысл, поясняя назначение объекта в программе, например: birth_date или salary;

если такое имя состоит из нескольких слов, как, например, birth_date, то принято либо разделять слова символом подчеркивания (birth_date), либо писать каждое следующее слово с большой буквы (birthDate). Замечено, что программисты, привыкшие к ОбъектноОриентированномуПодходу предпочитают выделять слова заглавными буквами, в то время как те_кто_много_писал_на_С используют символ подчеркивания. Какой из двух способов лучше – вопрос вкуса.

Определение объекта

В самом простом случае оператор определения объекта состоит из спецификатора типа и имени объекта и заканчивается точкой с запятой. Например:

double salary; double wage; int month; int day; int year;

unsigned long distance;

В одном операторе можно определить несколько объектов одного типа. В этом случае их имена перечисляются через запятую:

double salary, wage;

int month,

day, year;

unsigned long distance;

Простое определение переменной не задает ее начального значения. Если объект определен как глобальный, спецификация С++ гарантирует, что он будет инициализирован нулевым значением. Если же переменная локальная либо динамически размещаемая (с помощью оператора new), ее начальное значение не определено, то есть она может содержать некоторое случайное значение.

Использование подобных переменных – очень распространенная ошибка, которую к тому же трудно обнаружить. Рекомендуется явно указывать начальное значение объекта, по крайней мере в тех случаях, когда неизвестно, может ли объект инициализировать сам себя. Механизм классов вводит понятие конструктора по умолчанию, который служит для присвоения значений по умолчанию. (Мы уже сказали об этом в разделе 2.3. Разговор о конструкторах по умолчанию будет продолжен немного позже, в разделах 3.11 и 3.15, где мы будем разбирать классы string и complex из стандартной библиотеки.)

int main() {

// неинициализированный локальный объект

int ival;

 

// объект типа string инициализирован

// конструктором по умолчанию

string project;

 

// ...

}

Начальное значение может быть задано прямо в операторе определения переменной. В С++ допустимы две формы инициализации переменной – явная, с использованием оператора присваивания:

int ival = 1024;

string project = "Fantasia 2000";

и неявная, с заданием начального значения в скобках:

int ival( 1024 );

string project( "Fantasia 2000" );

Оба варианта эквивалентны и задают начальные значения для целой переменной ival как 1024 и для строки project как "Fantasia 2000".

Явную инициализацию можно применять и при определении переменных списком:

double salary = 9999.99, wage = salary + 0.01; int month = 08;

day = 07, year = 1955;

Переменная становится видимой (и допустимой в программе) сразу после ее определения, поэтому мы могли проинициализировать переменную wage суммой только что определенной переменной salary с некоторой константой. Таким образом, определение:

// корректно, но бессмысленно

int bizarre = bizarre;

является синтаксически допустимым, хотя и бессмысленным.

Встроенные типы данных имеют специальный синтаксис для задания нулевого значения:

// ival получает значение 0, а dval - 0.0

int ival = int();

double dval = double();

В следующем определении:

// int() применяется к каждому из 10 элементов

vector< int > ivec( 10 );

к каждому из десяти элементов вектора применяется инициализация с помощью int(). (Мы уже говорили о классе vector в разделе 2.8. Более подробно об этом см. в разделе 3.10 и главе 6.)

Переменная может быть инициализирована выражением любой сложности, включая вызовы функций. Например:

#include <cmath>

#include <string>

 

double price = 109.99, discount = 0.16;

double sale_price( price * discount );

string pet( "wrinkles" );

 

extern int get_value();

int val = get_value();

 

unsigned abs_val = abs( val );

abs() – стандартная функция, возвращающая абсолютное значение параметра. get_value() – некоторая пользовательская функция, возвращающая целое значение.

Упражнение 3.3

Какие из приведенных ниже определений переменных содержат синтаксические ошибки?

(a) int car = 1024, auto = 2048; (b) int ival = ival; (c) int ival( int() ); (d) double salary = wage = 9999.99;

(e) cin >> int input_value;

Упражнение 3.4

Объясните разницу между l-значением и r-значением. Приведите примеры.

Упражнение 3.5

Найдите отличия в использовании переменных name и student в первой и второй строчках каждого примера:

(a) extern string name; string name( "exercise 3.5a" );   (b) extern vector<string> students;

vector<string> students;

Упражнение 3.6

Какие имена объектов недопустимы в С++? Измените их так, чтобы они стали синтаксически правильными:

(a) int double = 3.14159; (b) vector< int > _; (c) string namespase; (d) string catch-22;

(e) char 1_or_2 = '1'; (f) float Float = 3.14f;

Упражнение 3.7

В чем разница между следующими глобальными и локальными определениями переменных?

string global_class; int global_int;

 

int main() {

int local_int;

string local_class;

 

// ...

}

Указатели

Указатели и динамическое выделение памяти были вкратце представлены в разделе 2.2. Указатель – это объект, содержащий адрес другого объекта и позволяющий косвенно манипулировать этим объектом. Обычно указатели используются для работы с динамически созданными объектами, для построения связанных структур данных, таких, как связанные списки и иерархические деревья, и для передачи в функции больших объектов – массивов и объектов классов – в качестве параметров.

Каждый указатель ассоциируется с некоторым типом данных, причем их внутреннее представление не зависит от внутреннего типа: и размер памяти, занимаемый объектом типа указатель, и диапазон значений у них одинаков[5]. Разница состоит в том, как компилятор воспринимает адресуемый объект. Указатели на разные типы могут иметь одно и то же значение, но область памяти, где размещаются соответствующие типы, может быть различной:

· указатель на int, содержащий значение адреса 1000, направлен на область памяти 1000-1003 (в 32-битной системе);

· указатель на double, содержащий значение адреса 1000, направлен на область памяти 1000-1007 (в 32-битной системе).

Вот несколько примеров:

int *ip1, *ip2; complex<double> *cp; string *pstring; vector<int> *pvec;

double *dp;

Указатель обозначается звездочкой перед именем. В определении переменных списком звездочка должна стоять перед каждым указателем (см. выше: ip1 и ip2). В примере ниже lp – указатель на объект типа long, а lp2 – объект типа long:

long *lp, lp2;

В следующем случае fp интерпретируется как объект типа float, а fp2 – указатель на него:

float fp, *fp2;

Оператор разыменования (*) может отделяться пробелами от имени и даже непосредственно примыкать к ключевому слову типа. Поэтому приведенные определения синтаксически правильны и совершенно эквивалентны:

string *ps;

string* ps;

Однако рекомендуется использовать первый вариант написания: второй способен ввести в заблуждение, если добавить к нему определение еще одной переменной через запятую:

//внимание: ps2 не указатель на строку!

string* ps, ps2;

Можно предположить, что и ps, и ps2 являются указателями, хотя указатель – только первый из них.

Если значение указателя равно 0, значит, он не содержит никакого адреса объекта.

Пусть задана переменная типа int:

int ival = 1024;

Ниже приводятся примеры определения и использования указателей на int pi и pi2:

//pi инициализирован нулевым адресом int *pi = 0;   // pi2 инициализирован адресом ival int *pi2 = &ival;   // правильно: pi и pi2 содержат адрес ival pi = pi2;   // pi2 содержит нулевой адрес

pi2 = 0;

Указателю не может быть присвоена величина, не являющаяся адресом:

// ошибка: pi не может принимать значение int

pi = ival

Точно так же нельзя присвоить указателю одного типа значение, являющееся адресом объекта другого типа. Если определены следующие переменные:

double dval;

double *ps = &dval;

то оба выражения присваивания, приведенные ниже, вызовут ошибку компиляции:

// ошибки компиляции

// недопустимое присваивание типов данных: int* <== double*

pi = pd

pi = &dval;

Дело не в том, что переменная pi не может содержать адреса объекта dval – адреса объектов разных типов имеют одну и ту же длину. Такие операции смешения адресов запрещены сознательно, потому что интерпретация объектов компилятором зависит от типа указателя на них.

Конечно, бывают случаи, когда нас интересует само значение адреса, а не объект, на который он указывает (допустим, мы хотим сравнить этот адрес с каким-то другим). Для разрешения таких ситуаций введен специальный указатель void, который может указывать на любой тип данных, и следующие выражения будут правильны:

// правильно: void* может содержать

// адреса любого типа

void *pv = pi;

pv = pd;

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.