Сделай Сам Свою Работу на 5

Эффект дальнодействия при ионном и фотонном облучении





Содержание

Введение. 3

1. Литературный обзор. 6

1.1. Эффект дальнодействия при ионном и фотонном облучении. 6

1.2. Модели эффекта дальнодействия. 8

1.3. Метод микротвердости, как способ регистрации эффекта дальнодействия 11

1.4 Эффект дальнодействия в кремнии при низкотемпературном нагреве 12

1.5 Биологическое действие электромагнитных волн миллиметрового диапазона (КВЧ) 12

2. Методика эксперимента. 16

3. Результаты и их обсуждение. 21

3.1 Зависимость относительного изменения микротвердости от длительности облучения светом. 21

3.2 Эффект дальнодействия при облучении светом в системе «кремний- водный раствор NaCl». 22

3.3 Эффект дальнодействия в системе кремниевый диод - водный раствор NaCl - кремниевый детектор. 27

Выводы.. 30

Список литературы.. 31

 

Введение

 

Эффект дальнодействия (ЭД) заключается в изменении структуры и свойств твердых тел на больших расстояниях от области выделения энергии при внешних воздействиях. ЭД был исследован при различных способах воздействия на поверхность металлов и полупроводников [1, 2, 3]. Одним из наиболее изученных видов ЭД является изменение микротвердости пластин кремния и фольг металлов на стороне, противоположной облучаемой, при облучении светом [1]. Была предложена модель ЭД при световом облучении, согласно которой под действием потока фотонов в естественном окисле (ЕО), покрывающем поверхность твердого тела, происходит энергетическое и пространственное перераспределение носителей заряда, вызывающее переменное электрическое поле, генерирующее , благодаря пьезоэффекту, гиперзвуковые волны (ГВ) с частотами ~1011-1012 Гц [2]. Проникая вглубь образца, эти ГВ изменяют дефектную структуру твердого тела, что фиксировалось обычно путем измерения микротвердости (Н) на стороне, противоположной облучаемой.



Диапазон частот в котором, согласно модели, генерируются ГВ, - это область миллиметровых волн, или крайне высоких частот (КВЧ). Этот диапазон весьма интересен с практической точки зрения. Начиная в 80-х годов прошлого века в Институте радиоэлектроники АН СССР (теперь ИРЭ РАН) под руководством чл.-кор. АН СССР Н.Д. Девяткова проводились исследования биологического действия КВЧ, и на этой основе был создан ряд приборов терапевтического назначения [4]. Согласно современным воззрениям, влияние КВЧ на живые объекты обусловлено способностью клеток организма излучать волны КВЧ и резонансно откликаться на их воздействие. Ключевая роль в биологическом действии КВЧ принадлежит водным растворам солей NaCl и KCl, которые присутствуют внутри и вокруг каждой клетки и участвуют в формировании, амплитудно - частотном преобразовании, усилении волн КВЧ [5].



При этом было установлено, что в клетках и водных растворах электромагнитные волны КВЧ могут преобразоваться в акустические волны с теми же частотами (~100 ГГц), т.е. в гиперзвуковые волны и обратно, подобно тому, как в нашей модели ЭД это происходит при облучении светом [2].

Водные растворы солей фигурируют не только в предложенных теориях биологического действия КВЧ, но и применяются на практике в некоторых приборах для терапевтического (полевого) воздействия, когда между источником поля и телом пациента помещается промежуточная среда в виде сосуда с водным раствором NaCl, по-видимому, служащая для усиления поля. Таким образом, возникла интересная перекличка идей, возникших в связи с исследованиями ЭД в твердых телах, и идей, лежащих в основе медико-биологических применений КВЧ-излучения.

Целью работы, в связи со сказанным, является изучение возможности практических применений ЭД в медико-биологических целях. В качестве первого шага было решено предпринять изучение прохождения дальнодействующих сигналов, испускаемых кремнием при воздействии света и регистрируемых путем измерения микротвердости, через «водный раствор NaCl , помещенный в сосуд из фторопласта», поскольку эта система аналогична, используемой в медико-биологических исследованиях. При этом пластины кремния нами использовались как в качестве источника поля (согласно нашей модели – это электрические поля КВЧ и гиперзвука ГВ), так и в качестве чувствительного элемента – детектора (приемника) поля. Оказалось, что измерение микротвердости Si позволяет успешно регистрировать распространение ЭД в данной комбинированной системе, включающей твердофазные и жидкофазные объекты. Наряду с возбуждением в Si КВЧ и ГВ полей светом, использовался и другой способ возбуждения – путем протекания прямого тока через кремниевый диод. Этот способ как оказалось можно обосновать, пользуясь обнаруженным ранее в НИФТИ явление ЭД в Si при низкотемпературном нагреве [3]. Чтобы использовать при изучении ЭД в системе (Si-фторопласт-водный раствор NaCl) широких интервалов времен воздействия и выяснить вопрос о том, в какой области времен следует ожидать дальнодействующего влияния света в указанной системе, в данной работе измерена зависимость относительного изменения микротвердости при облучении одиночных образцов светом в более широком интервале времен, чем ранее исследовалось.



 

Литературный обзор

Эффект дальнодействия при ионном и фотонном облучении

 

Под эффектом дальнодействия ( ЭД ) первоначально подразумевалось аномально глубокое проникновение зоны влияния ионного облучения на структуру и свойства твердых тел [6-8]. Позднее выяснилось, что похожая аномалия наблюдается и при других видах облучения (например, электронными пучками [9] или плазмой [10]), а также при иных способах обработки поверхности (химическом травлении [11], механической шлифовке или полировке [12,13], ультразвуковой очистке [14] и др). Поэтому эффектом дальнодействия стали называть необычно далекое распространение зоны измененных свойств твердых тел при различных обработках поверхности.

Впервые [15] сообщалось об аномальном глубоком проникновении зоны изменения параметра решетки и времени жизни неосновных носителей заряда при относительно малой интенсивном ионном облучении кремния. В дальнейшем это явление было изучено более подробно при помощи прецизионных рентгенодифракционных методов и измерения микротвердости Н [16-20]. ЭД в полупроводниках наблюдался и другими группами исследователей [21,22]. Наиболее яркое проявление эффекта состоит в изменении свойств образца со стороны, противоположной облучаемой. Этот вид ЭД был детально изучен для случая ионного облучения металлических фольг и назван малодозным ЭД [23].

Было предложено качественное объяснение ЭД, заключающееся в генерации упругих, или акустических ( в общем случае – деформационных ), волн и трансформации системы протяженных дефектов твердых тел под действием этих волн [24]. Предполагалось, что акустические волны ( АВ) генерируются в каскадах атомных смещений [20]. Однако позднее выяснилось [9], что похожие закономерности имеют место и при облучении электронами с энергией, недостаточной для смещения атомов. Это стимулировало постановку экспериментов по ЭД с применением еще более «мягких» лучей – световых. И действительно, оказалось, что при определенных условиях облучение светом вызывает изменения микротвердости на обратной стороне металлических фольг [25] и пластинок кремния [26].

ЭД при облучении светом был наиболее подробно исследован методом микротвердости. В результате были установлены следующие основные закономерности.

Необходимым условием существования ЭД при облучении светом является наличие естественного оксида ( ЕО) на облучаемой стороне образца (наличие или отсутствие ЕО на обратной стороне не оказывает существенного влияния).

Изменения Н при облучении нефильтрованным светом лампы накаливания происходит только с обратной стороны образца. Однако, исключение из спектра коротковолновой части приводит к тому, что величина Н изменяется с обеих сторон. Отсутствие изменения Н с облучаемой стороны было названо полярностью или блокировкой ЭД.

Величина ∆Н/Н немонотонно зависит от дозы (длительности) облучения – стремясь к нулю при больших дозах; следовательно, существует «окно» доз, при которых в материале происходят структурные изменения.

При облучении светом значения ∆Н/Н релаксируют после засветки, как правило, приближаясь к нулю в течение нескольких десятков минут (при комнатной температуры среды); процесс релаксации ускоряется экспоненциально с ростом температуры.

Кроме, облучения одиночных образцов, проводились облучения «стопок», состоящих из наложенных друг на друга образцов. При облучении стопок из двух образцов (например, Al/Al, Si/Si, Al/Si, Si/Al) изменения Н обнаруживаются не только для верхнего, но и для нижнего образца (на его нижней стороне), причем в ряде случаев изменения для него даже сильнее, чем в случае облучения одиночного образца. (Предполагается, что свет падает на стопку сверху). Важную информацию дали исследования по облучению стопок, состоящих из образцов Аl и Si [27,28].

Установленные закономерности позволили предположить, что причиной изменений свойств при облучении светом является генерация акустических (гиперзвуковых) волн, действующих на систему протяженных дефектов. Эти волны возникают вследствие процессов, связанных с наличием на облучаемой поверхности слоя ЕО, поскольку для образцов с удаленным ЕО эффект не имеет места.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.