Сделай Сам Свою Работу на 5

Что такое микропроцессор?





Микропроцессор – микроэлектронное устройство, выполненное на сверхбольших интегральных схемах (СБИС) и выполняющее основные функции центрального процессора в ЭВМ: обработку цифровой информации и управление процессом обработки. Сам по себе МП еще не способен полностью реализовать обработку информации. Для этого МП связывают с другими устройствами , например с запоминающими устройствами (ЗУ) и устройствами ввода-вывода (УВВ), и программируют. Именно программирование позволяет настроить МП на выполнение любых функций, т.е. реализацию зависимости между входными и выходными сигналами. Это основное свойство МП – универсальность.

Ядром любой микропроцессорной системы является микропроцессор или просто процессор (от английского processor). Перевести на русский язык это слово правильнее всего как «обработчик», так как именно микропроцессор — это тот узел, блок, который производит всю обработку информации внутри микропроцессорной системы. Остальные узлы выполняют всего лишь вспомогательные функции: хранение информации (в том числе и управляющей информации, то есть программы), связи с внешними устройствами, связи с пользователем и т.д. Процессор заменяет практически всю «жесткую логику», которая понадобилась бы в случае традиционной цифровой системы. Он выполняет арифметические функции (сложение, умножение и т.д.), логические функции (сдвиг, сравнение, маскирование кодов и т.д.), временное хранение кодов (во внутренних регистрах), пересылку кодов между узлами микропроцессорной системы и многое другое. Количество таких элементарных операций, выполняемых процессором, может достигать нескольких сотен. Процессор можно сравнить с мозгом системы.



Но при этом надо учитывать, что все свои операции процессор выполняет последовательно, то есть одну за другой, по очереди. Конечно, существуют процессоры с параллельным выполнением некоторых операций, встречаются также микропроцессорные системы, в которых несколько процессоров работают над одной задачей параллельно. С одной стороны, последовательное выполнение операций — несомненное достоинство, так как позволяет с помощью всего одного процессора выполнять любые, самые сложные алгоритмы обработки информации. Но, с другой стороны, последовательное выполнение операций приводит к тому, что время выполнения алгоритма зависит от его сложности. Простые алгоритмы выполняются быстрее сложных. То есть микропроцессорная система способна сделать все, но работает она не слишком быстро, ведь все информационные потоки приходится пропускать через один-единственный узел — микропроцессор (рис. 1.3). В традиционной цифровой системе можно легко организовать параллельную обработку всех потоков информации, правда, ценой усложнения схемы.




Рис. 1.3. Информационные потоки в микропроцессорной системе.

Итак, микропроцессор способен выполнять множество операций. Но откуда он узнает, какую операцию ему надо выполнять в данный момент? Именно это определяется управляющей информацией, программой. Программа представляет собой набор команд (инструкций), то есть цифровых кодов, расшифровав которые, процессор узнает, что ему надо делать. Программа от начала и до конца составляется человеком, программистом, а процессор выступает в роли послушного исполнителя этой программы, никакой инициативы он не проявляет (если, конечно, исправен). Поэтому сравнение процессора с мозгом не слишком корректно. Он всего лишь исполнитель того алгоритма, который заранее составил для него человек. Любое отклонение от этого алгоритма может быть вызвано только неисправностью процессора или каких-нибудь других узлов микропроцессорной системы.

Все команды, выполняемые процессором, образуют систему команд процессора. Структура и объем системы команд процессора определяют его быстродействие, гибкость, удобство использования. Всего команд у процессора может быть от нескольких десятков до нескольких сотен. Система команд может быть рассчитана на узкий круг решаемых задач (у специализированных процессоров) или на максимально широкий круг задач (у универсальных процессоров).



Универсальные МП предназначаются для применения в вычислительных системах: персональных ЭВМ, рабочих станциях, в последнее время для массово-параллельных структур супер-ЭВМ. Предназначены для проведения научно-технических расчетов (операции с плавающей запятой над 64-разряд. операндами). Цифровые сигнальные процессоры рассчитаны на обработку в реальном масштабе времени цифровых потоков, образованных путем оцифровывания аналоговых сигналов. Это обуславливает их сравнительно малую разрядность и преимущественно целочисленную обработку. Однако современные сигнальные процессоры работают с 30-40 р. операндами. Медийные процессоры – конструктивно завершенная система для обработки аудио- и видеоинформации. Микроконтроллеры используются во встроенных системах управления, в том числе бытовых приборах. Обладают наибольшей специализацией и разнообразием функций.

Коды команд могут иметь различное количество разрядов (занимать от одного до нескольких байт). Каждая команда имеет свое время выполнения, поэтому время выполнения всей программы зависит не только от количества команд в программе, но и от того, какие именно команды используются.

Для выполнения команд в структуру процессора входят внутренние регистры, арифметико-логическое устройство (АЛУ, ALU — Arithmetic Logic Unit) , мультиплексоры, буферы, регистры и другие узлы. Работа всех узлов синхронизируется общим внешним тактовым сигналом процессора. То есть процессор представляет собой довольно сложное цифровое устройство (рис. 1.4).


Рис. 1.4. Пример структуры простейшего процессора.

Впрочем, для разработчика микропроцессорных систем информация о тонкостях внутренней структуры процессора не слишком важна. Разработчик должен рассматривать процессор как «черный ящик», который в ответ на входные и управляющие коды производит ту или иную операцию и выдает выходные сигналы. Разработчику необходимо знать систему команд, режимы работы процессора, а также правила взаимодействия процессора с внешним миром или, как их еще называют, протоколы обмена информацией. О внутренней структуре процессора надо знать только то, что необходимо для выбора той или иной команды, того или иного режима работы.

Физические компоненты и схемы, составляющие МП – это аппаратная часть. Аппаратура способна выполнять ограниченный набор элементарных операций. Прочие функциональные возможности достигаются программным путем, т.е. неким алгоритмом выполнения элементарных машинных операций. Аппаратная часть МП представляет собой совокупность многократно повторяющихся типовых логических узлов: триггеров, регистров, счетчиков, сумматоров, дешифраторов, мультиплексоров, схем памяти и т.п. Это - комбинационные и последовательностные схемы. Первые (схемы без памяти) предназначены для арифметико-логических операций, вторые – для хранения, сдвига, передачи информации.

Одни и те же функции могут выполняться как аппаратно, так и программно. Например, операция умножения. Существующий аппаратный умножитель позволяет выполнять эту операцию в тысячи раз быстрее, чем программным путем. Это очень актуально для реальных систем, в которых быстродействие является приоритетной характеристикой.

 

Шинная структура связей

Для достижения максимальной универсальности и упрощения протоколов обмена информацией в микропроцессорных системах применяется так называемая шинная структура связей между отдельными устройствами, входящими в систему. Суть шинной структуры связей сводится к следующему.


Рис. 1.5. Классическая структура связей.

При классической структуре связей (рис. 1.5) все сигналы и коды между устройствами передаются по отдельным линиям связи. Каждое устройство, входящее в систему, передает свои сигналы и коды независимо от других устройств. При этом в системе получается очень много линий связи и разных протоколов обмена информацией.

При шинной структуре связей (рис. 1.6) все сигналы между устройствами передаются по одним и тем же линиям связи, но в разное время (это называется мультиплексированной передачей). Причем передача по всем линиям связи может осуществляться в обоих направлениях (так называемая двунаправленная передача). В результате количество линий связи существенно сокращается, а правила обмена (протоколы) упрощаются. Группа линий связи, по которым передаются сигналы или коды как раз и называется шиной (англ. bus).

Понятно, что при шинной структуре связей легко осуществляется пересылка всех информационных потоков в нужном направлении, например, их можно пропустить через один процессор, что очень важно для микропроцессорной системы. Однако при шинной структуре связей вся информация передается по линиям связи последовательно во времени, по очереди, что снижает быстродействие системы по сравнению с классической структурой связей.


Рис. 1.6. Шинная структура связей.

Большое достоинство шинной структуры связей состоит в том, что все устройства, подключенные к шине, должны принимать и передавать информацию по одним и тем же правилам (протоколам обмена информацией по шине). Соответственно, все узлы, отвечающие за обмен с шиной в этих устройствах, должны быть единообразны, унифицированы.

Существенный недостаток шинной структуры связан с тем, что все устройства подключаются к каждой линии связи параллельно. Поэтому любая неисправность любого устройства может вывести из строя всю систему, если она портит линию связи. По этой же причине отладка системы с шинной структурой связей довольно сложна и обычно требует специального оборудования.

В системах с шинной структурой связей применяют все три существующие разновидности выходных каскадов цифровых микросхем:

· стандартный выход или выход с двумя состояниями (обозначается 2С, 2S, реже ТТЛ, TTL);

· выход с открытым коллектором (обозначается ОК, OC);

· выход с тремя состояниями или (что то же самое) с возможностью отключения (обозначается 3С, 3S).

Упрощенно эти три типа выходных каскадов могут быть представлены в виде схем на рис. 1.7.

У выхода 2С два ключа замыкаются по очереди, что соответствует уровням логической единицы (верхний ключ замкнут) и логического нуля (нижний ключ замкнут). У выхода ОК замкнутый ключ формирует уровень логического нуля, разомкнутый — логической единицы. У выхода 3С ключи могут замыкаться по очереди (как в случае 2С), а могут размыкаться одновременно, образуя третье, высокоимпедансное, состояние. Переход в третье состояние (Z-состояние) управляется сигналом на специальном входе EZ.


Рис. 1.7. Три типа выходов цифровых микросхем.

Выходные каскады типов 3С и ОК позволяют объединять несколько выходов микросхем для получения мультиплексированных (рис. 1.8) или двунаправленных (рис. 1.9) линий.


Рис. 1.8. Мультиплексированная линия.


Рис. 1.9. Двунаправленная линия.

При этом в случае выходов 3С необходимо обеспечить, чтобы на линии всегда работал только один активный выход, а все остальные выходы находились бы в это время в третьем состоянии, иначе возможны конфликты. Объединенные выходы ОК могут работать все одновременно, без всяких конфликтов.

Типичная структура микропроцессорной системы приведена на рис. 1.10. Она включает в себя три основных типа устройств:

· процессор;

· память, включающую оперативную память (ОЗУ, RAM — Random Access Memory) и постоянную память (ПЗУ, ROM —Read Only Memory), которая служит для хранения данных и программ;

· устройства ввода/вывода (УВВ, I/O — Input/Output Devices), служащие для связи микропроцессорной системы с внешними устройствами, для приема (ввода, чтения, Read) входных сигналов и выдачи (вывода, записи, Write) выходных сигналов.


Рис. 1.10. Структура микропроцессорной системы.

Все устройства микропроцессорной системы объединяются общей системной шиной (она же называется еще системной магистралью или каналом). Системная магистраль включает в себя четыре основные шины нижнего уровня:

· шина адреса (Address Bus);

· шина данных (Data Bus);

· шина управления (Control Bus);

· шина питания (Power Bus).

Шина адреса служит для определения адреса (номера) устройства, с которым процессор обменивается информацией в данный момент. Каждому устройству (кроме процессора), каждой ячейке памяти в микропроцессорной системе присваивается собственный адрес. Когда код какого-то адреса выставляется процессором на шине адреса, устройство, которому этот адрес приписан, понимает, что ему предстоит обмен информацией. Шина адреса может быть однонаправленной или двунаправленной.

Шина данных — это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы. Обычно в пересылке информации участвует процессор, который передает код данных в какое-то устройство или в ячейку памяти или же принимает код данных из какого-то устройства или из ячейки памяти. Но возможна также и передача информации между устройствами без участия процессора. Шина данных всегда двунаправленная.

Шина управления в отличие от шины адреса и шины данных состоит из отдельных управляющих сигналов. Каждый из этих сигналов во время обмена информацией имеет свою функцию. Некоторые сигналы служат для стробирования передаваемых или принимаемых данных (то есть определяют моменты времени, когда информационный код выставлен на шину данных). Другие управляющие сигналы могут использоваться для подтверждения приема данных, для сброса всех устройств в исходное состояние, для тактирования всех устройств и т.д. Линии шины управления могут быть однонаправленными или двунаправленными.

Наконец, шина питания предназначена не для пересылки информационных сигналов, а для питания системы. Она состоит из линий питания и общего провода. В микропроцессорной системе может быть один источник питания (чаще +5 В) или несколько источников питания (обычно еще –5 В, +12 В и –12 В). Каждому напряжению питания соответствует своя линия связи. Все устройства подключены к этим линиям параллельно.

Если в микропроцессорную систему надо ввести входной код (или входной сигнал), то процессор по шине адреса обращается к нужному устройству ввода/вывода и принимает по шине данных входную информацию. Если из микропроцессорной системы надо вывести выходной код (или выходной сигнал), то процессор обращается по шине адреса к нужному устройству ввода/вывода и передает ему по шине данных выходную информацию.

Если информация должна пройти сложную многоступенчатую обработку, то процессор может хранить промежуточные результаты в системной оперативной памяти. Для обращения к любой ячейке памяти процессор выставляет ее адрес на шину адреса и передает в нее информационный код по шине данных или же принимает из нее информационный код по шине данных. В памяти (оперативной и постоянной) находятся также и управляющие коды (команды выполняемой процессором программы), которые процессор также читает по шине данных с адресацией по шине адреса. Постоянная память используется в основном для хранения программы начального пуска микропроцессорной системы, которая выполняется каждый раз после включения питания. Информация в нее заносится изготовителем раз и навсегда.

Таким образом, в микропроцессорной системе все информационные коды и коды команд передаются по шинам последовательно, по очереди. Это определяет сравнительно невысокое быстродействие микропроцессорной системы. Оно ограничено обычно даже не быстродействием процессора (которое тоже очень важно) и не скоростью обмена по системной шине (магистрали), а именно последовательным характером передачи информации по системной шине (магистрали).

Важно учитывать, что устройства ввода/вывода чаще всего представляют собой устройства на «жесткой логике». На них может быть возложена часть функций, выполняемых микропроцессорной системой. Поэтому у разработчика всегда имеется возможность перераспределять функции системы между аппаратной и программной реализациями оптимальным образом. Аппаратная реализация ускоряет выполнение функции, но имеет недостаточную гибкость. Программная реализация значительно медленнее, но обеспечивает высокую гибкость. Аппаратная реализация функций увеличивает стоимость системы и ее энергопотребление, программная — не увеличивает. Чаще всего применяется комбинирование аппаратных и программных функций.

Иногда устройства ввода/вывода имеют в своем составе процессор, то есть представляют собой небольшую специализированную микропроцессорную систему. Это позволяет переложить часть программных функций на устройства ввода/вывода, разгрузив центральный процессор системы.

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.