Сделай Сам Свою Работу на 5

Нанотехнологические сенсоры и анализаторы





Использование микро- и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является "лаборатория на чипе" (lab on a chip) [5]. Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Прикрепление молекулы вещества к рецептору выявляется электрическим путем или по флюоресценции. На одной пластинке могут быть размещены датчики для многих тысяч веществ.

Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот (для целей идентификации, выявления генетических или онкологических заболеваний), обнаружения возбудителей инфекционных заболеваний, токсических веществ.

Устройство размером в несколько миллиметров может быть помещено на поверхности кожи (для анализа веществ, выделяемых с потом) или внутри организма (в полость рта, желудочно-кишечный тракт, под кожу или в мышцу). При этом оно сможет сообщать о состоянии внутренней среды организма, сигнализировать о любых подозрительных изменениях.



В Институте молекулярной биологии им. Энгельгардта Российской академии наук разработана система, предназначенная для экспресс выявления штамма возбудителя; на одном чипе размещается около сотни флуоресцентных датчиков.

Интересную идею разрабатывают сразу несколько групп исследователей. Суть ее состоит в том, чтобы "пропустить" молекулу ДНК (или РНК) через нанопору в мембране. Размер поры должен быть таким, чтобы ДНК проходила в "распрямленном" виде, одно основание за другим. Измерение электрического градиента или квантового туннельного тока через пору позволило бы определить, какое основание проходит через нее сейчас. Основанный на таком принципе прибор позволил бы получить полную последовательность ДНК за один проход.

 

Медицинские применения сканирующих зондовых микроскопов.

Сканирующие микроскопы представляют собой группу уникальных по своим возможностям приборов. Они позволяют достигать увеличения достаточного, чтобы рассмотреть отдельные молекулы и атомы. При этом возможно изучать объекты, не разрушая их и, даже, что особенно важно с точки зрения медико-биологических применений, в некоторых случаях изучать живые объекты. Сканирующие микроскопы некоторых типов позволяют также манипулировать отдельными молекулами и атомами.



Хороший обзор возможностей сканирующих микроскопов при изучении биологических объектов содержится в книге [6]. Уникальные возможности сканирующих микроскопов определяют перспективы их применения в медико-биологических исследованиях. Это в первую очередь изучение молекулярной структуры клеточных мембран.

Наноманипуляторы

Наноманипуляторами можно назвать устройства, предназначенные для манипуляций с нанообъектами - наночастицами, молекулами и отдельными атомами. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.

В настоящее время созданы прототипы нескольких вариантов "нанопинцета". В одном случае использовались две углеродные нанотрубки диаметром 50 нм, расположенные параллельно на сторонах стеклянного волокна диаметром около 2 мкм. При подаче на них напряжения нанотрубки могли расходиться и сходиться наподобие половинок пинцета.

В другом случае использовались молекулы ДНК, меняющие свою геометрию при конформационном переходе, или разрыве связей между нуклеотидными основаниями на параллельных ветвях молекулы.

Однако манипулятор для нанообъектов может и отличаться своим устройством от макроинструментов. Так, была продемонстрирована возможность перемещать нанообъекты с помощью луча лазера. В недавней работе ученых Корнельского и Массачусетского университетов им удалось "размотать" молекулу ДНК с нуклеосомы. При этом они тянули ее за конец с помощью такого "лазерного пинцета".



Микро- и наноустройства

В настоящее время все большее распространение получают миниатюрные устройства, которые могут быть помещены внутрь организма для диагностических, а возможно, и лечебных целей.

Современное устройство, предназначенное для исследования желудочно-кишечного тракта, имеет размер несколько миллиметров, несет на борту миниатюрную видеокамеру и систему освещения. Полученные кадры передаются наружу.

Устройства такого рода было бы неправильно относить к области наномедицины. Однако, открываются широкие перспективы их дальнейшей миниатюризации и интеграции с наносенсорами описанных выше типов, бортовыми системами управления и связи на основе молекулярной электроники и других нанотехнологий, источниками энергии, утилизирующими вещества, содержащиеся во внутренних средах организма. В дальнейшем такие устройства могут быть снабжены приспособлениями для автономной локомоции и даже манипуляторами того или иного рода. В этом случае они окажутся способны проникать в нужную точку организма, собирать там локальную диагностическую информацию, доставлять лекарственные средства и, в еще более отдаленной перспективе, осуществлять "нанохирургические операции" - разрушение атеросклеротических бляшек, уничтожение клеток с признаками злокачественного перерождения, восстановление поврежденных нервных волокон и т. д. Подробнее такие устройства (нанороботы) будут рассмотрены ниже.

Нанороботы

Классик в области нанотехнологических разработок и предсказаний Эрик Дрекслер в своих фундаментальных работах описал основные методы лечения и диагностики на основе нанотехнологий. Ключевой проблемой достижения этих поразительных результатов является создание машин ремонта клеток, прототипами которых являются нанороботы, называемые также ассемблерами или репликаторами. Но если обычные нанороботы должны уметь превращать одну вещь в другую, переставляя составляющие их атомы, то медицинские нанороботы должны уметь диагностировать болезни, циркулируя в кровеносных и лимфатических системах человека и внутренних органов, доставлять лекарства и даже делать хирургические операции. Они смогут уничтожать болезни еще в момент их зарождения и возвращать молодость. Кроме того, представляется актуальным нахождение нанороботов в нервной системе для анализа ее деятельности, а также возможность корректировки собственной ДНК, например, для лечения аллергии и диабета. Медицинские нанороботы предоставят возможность оживления людей, замороженных методами крионики.[27]

Типичный медицинский наноробот будет иметь микронные размеры, позволяющие двигаться по капиллярам, и состоять (на базе нынешних взглядов) из углерода. Углерод и его производные выбираются по причине высокой прочности и его химической инертности. Конструкции нанороботов еще не разработаны и находятся в стадии проектирования. Их использование, порядок, время работы и вывода из организма будут зависеть от конкретных задач. Проблема биосовместимости решается за счет выбора оптимального материала и размеров наноробота. В качестве основных источников энергии предполагается использовать локальные запасы глюкозы и аминокислот в теле человека.[27]

Управление нанороботами будет осуществляться акустически путем подачи команд через компьютер. Обратную связь также возможно осуществить акустически, но можно ее создать и на основе внутренней сети с локальными данными, которые пересылаются на некоторый центральный узел связи, откуда они поступают к лечащему врачу. Лечение будет заключаться во введении нанороботов в человеческое тело для дальнейшего анализа ситуации и принятия решения о выборе метода лечения. Врач управляет нанороботами, получая информацию от активных нанороботов. Наномедицинский персонал будущего должен будет отвечать повышенным требованиям к знанию основ наномира, поскольку, к примеру, незнание законов физики может привести к гибели пациента. Категорически планируется исключить репликацию (размножение) нанороботов в теле человека для исключения фатальных последствий.

В настоящее время уже существуют предшественники нанороботов, но в миллимитровом масштабе. Впервые к помощи роботов прибегли в 2000г. Хирурги медицинского факультета Вашингтонского университета во время операции на сердце, с тех пор механизированные инструменты стали применяться при проведении целого ряда медицинских процедур. Год спустя нью-йоркские доктора использовали дистанционно управляемого робота для удаления желчного пузыря женщине, находящейся во Франции.

Среди проектов будущих медицинских нанороботов уже существует внутренняя классификация, по области их работы, на микрофагоциты, респироциты, клоттоциты, васкулоиды и другие.[27]

Микрофагоциты принадлежат к классу медицинских нанороботов, являющихся искусственными иммунными клетками. Они предназначены для очищения крови человека от вредных микроорганизмов, потенциально помогая в свертывании крови, транспорте кислорода и углекислого газа, и создании надстройки к естественной иммунной системе. Предполагается, что микрофагоциты будут находить в организме человека чужеродные элементы и перерабатывать их в нейтральные соединения. Причем в отличие от натуральных фагоцитов микрофагоциты будут это делать намного быстрее и чище.

Респироциты являются аналогами эритроцитов, которые имеют значительно большую функциональность, чем их природные прототипы. Их внедрение позволит снизить постоянную потребность человека в кислороде, позволяя подолгу обходится без него, и поможет людям, страдающим астматическими заболеваниями

Эти наномашины будут анализировать сигналы от своих сенсоров для принятия акустических команд от врача. Команды по нагнетанию кислорода позволят пловцам задерживать дыханию на несколько часов, а спринтерам бежать дистанцию без глотка воздуха.

Клоттоциты - искусственные аналоги тромбоцитов. Эти машины позволят прекращать кровотечения в течение 1 секунды, будучи более эффективными своих природных аналогов во много раз. Их работа будет заключаться в быстрой доставке к месту кровотечения связывающей сети. Эта искусственная сеть будет задерживать кровяные клетки, останавливая ток крови

Настоящая задача влечет за собой повешение требований к клоттоцитам, включая решение обратных задач - не только связывания крови, но и ее очистку от тромбов.[27]

Васкулоид - это механический протез, созданной на основе микрофагоцитов, респироцитов и клоттоцитов, и входящий в состав проекта по созданию робототехнической крови, совместно разработанного Крисом Фениксом и Робертом Фрайтасом. Этот проект, названный "Roboblood", представляет собой комплекс медицинских нанороботов, способных жить и функционировать в теле человека, выполняя все функции естественной кровеносной системы, но только гораздо лучше и эффективнее природной. Робототизированная кровь позволит своему владельцу не бояться микробов и вирусов, атеросклероза и венозного расширения вен, не говоря уже о тотальном лечении больных и поврежденных клеток.[27]

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.