Сделай Сам Свою Работу на 5

Работа с векторами прерываний.





Необходимость работать с таблицей прерываний может возникнуть в следующих случаях:

1. Как прерывание можно вызывать одну из ваших подпрограмм. Хотя вызов подпрограммы как прерывания требует больше процессорного времени, такой подход оправдан если необходимо нарушить принцип иерархичности программного обеспечения внутри одного модуля или если эта процедура используется многими Вашими программами (ее можно оставить резидентной после завершения программы настройки Вашей системы).

2. Второй причиной написания прерывания может быть использование какого-либо отдельного аппаратного прерывания. Это прерывание автоматически вызывается при возникновении определенных условий.
Обычно BIOS инициализирует неиспользуемые ею вектора прерываний так, что они указывают на процедуру, которая вообще ничего не делает (она содержит один оператор IRET). Вы можете написать свою процедуру и изменить вектор прерываний, чтобы он указывал на нее. Тогда при возникновении аппаратного прерывания будет выполняться Ваша процедура.

3. Возможна подмена существующего прерывания на ваше собственное. Одно из таких прерываний это прерывание времени суток, которое автоматически вызывается 18.2 раза в секунду. Обычно это прерывание только обновляет показание часов, но Вы можете использовать его для синхронизации событий внутри Вашей программы. Другие возможности - это написание процедуры обработки Ctrl-Break если Ваша программа должна выполнять некие специфические действия перед своим завершением.



4. Наконец, Вы можете захотеть написать прерывание, которое дополнит одну из процедур операционной системы. В этом случае после выполнения необходимых Вам действий необходимо передать управление исходной подпрограмме обслуживания прераваний (используется "длинный" безусловный переход или дополнительное прерывание). Такой прием может понадобиться при написании резидентных программ, получающих управление при получении определенной команды с клавиатуры.

Таблица векторов прерываний занимает 1Кбайт памяти в диапазоне 00000h - 00400h. Каждому вектору отводится четыре байта в таблице и присваивается номер от 00h до FFh. При инициализации системы вектора настраиваются на подпрограммы, расположенные в ROM BIOS или DOS.



За пользователем сохраняется возможность перенастраивать вектора по своему усмотрению. Это можно сделать записав по соответствующему физическому адресу необходимое программисту значение, или обратившись к службам DOS. В любом случае необходимо позаботиться о сохранении старого вектора и восстановлении его значения перед завершением программы.

 

20. Внешние устройства

Внешние устройства (ВУ) ПК — важнейшая составная часть любого вычислительного комплекса, достаточно сказать, что по стоимости ВУ составляют до 80-85 % стоимости всего ПК.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими компьютерами.

К внешним устройствам относятся:

□ внешние запоминающие устройства (ВЗУ) или внешняя память ПК;

□ диалоговые средства пользователя;

□ устройства ввода информации;

□ устройства вывода информации;

□ средства связи и телекоммуникаций.

Диалоговые средства пользователя включают в свой состав:

□ видеомонитор (видеотерминал, дисплей) — устройство для отображения вводимой в ПК и выводимой из него информации;

□ устройства речевого ввода-вывода — быстро развивающиеся средства мультимедиа. Это различные микрофонные акустические системы, «звуковые мыши» со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и кодировать; синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.



К устройствам ввода информации относятся:

□ клавиатура — устройство для ручного ввода числовой, текстовой и управляющей информации в ПК;

□ графические планшеты (дигитайзеры) — устройства для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняется считывание координат его местоположения и ввод этих координат в ПК;

□ сканеры (читающие автоматы) — оборудование для автоматического считывания с бумажных и пленочных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей;

□ устройства целеуказания (графические манипуляторы), предназначенные для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК (джойстик — рычаг, мышь, трекбол — шар в оправе, световое перо и т. д.);

□ сенсорные экраны — для ввода отдельных элементов изображения, программ или команд с экрана дисплея в ПК.

К устройствам вывода информации относятся:

□ принтеры — печатающие устройства для регистрации информации на бумажный или пленочный носитель;

□ графопостроители (плоттеры) — устройства для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т. п.) и для подключения ПК к каналам связи, к другим компьютерам и вычислительным сетям (сетевые интерфейсные платы и карты — сетевые адаптеры, «стыки», мультиплексоры передачи данных, модемы — модуляторы/демодуляторы).

В частности, показанный на рис. 4.1 сетевой адаптер относится к внешнему интерфейсу ПК и служит для подключения его к каналу связи с целью обмена информацией с другими компьютерами в процессе работы в составе вычислительной сети. В качестве сетевого адаптера чаще всего используется модем.

 

21. Интерфейсы периферийных устройств

Шины ввода-вывода взаимодействуют с ПУ не непосредственно, а с помощью внешних интерфейсов (интерфейсов периферийных устройств).

В отличие от шин расширения, шины внешних интерфейсов имеют большую длину и позволяют подключать к системному блоку компьютера ПУ, находящиеся на расстоянии до нескольких метров.

Внешние интерфейсы ПУ можно разделить на две группы: специализированные интерфейсы и универсальные интерфейсы.

Специализированные интерфейсы обслуживают только один тип ПУ. К ним можно отнести: интерфейсы клавиатуры, интерфейс манипуляторов, аудиоинтерфейсы, интерфейсы мониторов, интерфейс игрового адаптера, интерфейс флоппи-дисков.

Универсальные интерфейсы позволяют подключать различные типы ПУ (печать, сканер, графопостроитель, видеокамера и т.д.). К этим интерфейсам относятся: последовательные интерфейсы RS-232c, USB, Fire Wire и др., параллельные интерфейсы Centronics (стандарт IEEE1284), SCSI, ATA и др.

развитием шин ввода-вывода и совершенствования самих ПУ изменяются и внешние интерфейсы.

Модифицируются старые, появляются новые.

Но эволюция интерфейсов ПУ идет меньшими темпами, чем системных интерфейсов и шин расширения. В таблице 4 приведены характеристики наиболее распространенных универсальных интерфейсов ПУ в их ретроспективе, начиная с интерфейсов, использовавшимися в первых ПК.

Практически не изменился за весь период развития ПК интерфейс RS-232, который появился в 1969г. Это наиболее простой и дешевый интерфейс. Он является дуплексным интерфейсом с последовательной передачей данных в асинхронном и синхронном режимах со скоростью до 115 Кбит/сек и топологией "точка-точка".

Интерфейс RS-232 чаще всего используется для подключения различного типа манипуляторов, для связи двух компьютеров, подключения принтеров и плоттеров, а также электронных ключей (Security Devices), предназначенных для защиты от нелицензированного использования программного обеспечения. Этот интерфейс позволяет эмулировать специальные терминалы (UT-52, UT-100 и т.д.). Он используется для беспроводных коммуникаций с применением излучателей и приемников инфракрасного диапазона - IR Connection.

Centronics – параллельный, симплексный интерфейс с побайтной передачей данных со скоростью до 150 КБайт/сек, предназначенный для подсоединения механических печатающих устройств, имеющий топологию "точка-точка". Он был разработан фирмой Epson в начале 80-х годов. С появлением новых видов ПУ и повышения их быстродействия произошло развитие Centronics. В 1994 году появился стандарт IEEE1284, где определялось три вида портов. SPP – начальный вариант Centronics.

EPP (Enchanted Parallel Port) – улучшенный параллельный порт. ECP (Extended Capability Port) – порт с расширенными возможностями. Последние варианты портов повысили быстродействие до 4-х Мбайт/сек, сделали интерфейс полудуплексным, что дало возможность использовать его для других видов ПУ, например, плоттеров, сканеров, видеокамер и т.п., а также использовать режим прямого доступа к памяти.

Наиболее быстродействующим, но и дорогим, является интерфейс SCSI (Small Computer System Interface), который был стандартизирован в 1986г. Этот интерфейс предназначен для подключений ПУ различных классов: жестких дисков, стримеров, CD-ROM, принтеров, сканеров и т.п. Это параллельный полудуплексный интерфейс со шлейфовой топологией соединения ПУ. С момента его появления прошло три его модификации. В 1994 году появились SCSI-2, а 1997 – SCSI-3. Скорость его возросла с 5 до 80 (160) Мбайт/сек, разрядность стала 8,16, (32) бита. 32-х разрядная шина практически не применяется. SCSI сейчас самый быстрый внешний интерфейс.

В последние годы появилась тенденция по созданию последовательных интерфейсов, не уступающих по скорости и количеству подключаемых ПУ SCSI, но имеющий более низкую стоимость.

В 1996г. появился последовательный интерфейс USB (Universal Serial Bus), работающий на скорости до 12 Мбит/сек и позволяющий подключать до 128 ПУ. Шина USB имеет древовидную структуру и требует специальные разветвители – хабы.

В 1995 был принят стандарт IEEE 1394, основанный на шине Fire Wire. В этом интерфейсе нет хабов и возможно подключение до 63 ПУ, скорость обмена 100 - 400 Мбит/сек.

Основные достоинства этого интерфейса по сравнению с USB определяются тем, что Fire Wire ориентирован на интенсивный обмен между любыми подключенными к ней устройствами, а USB – на взаимосвязь ПУ и ПК. Изохронный трафик Fire Wire позволяет передавать "живое видео", высокая скорость обмена позволяет даже на скорости 100 Мбит/сек передавать одновременно два канала видео (30 кадров в секунду), широковещательное качество и стереоаудио сигнал с качеством CD. Возможно использование шины для объединения нескольких ПК и ПУ в локальную сеть. Скорость передачи до 400 Мбит/сек.

В настоящее время интенсивно продвигается на рынок шина USB, как дешевый и универсальный интерфейс для любого типа ПУ. Он постепенно захватывает и область специальных интерфейсов.

Интерфейс АТА (AT Attachment for Disk Driver), разработанный в 1986-1990 годах для подключения накопителей на жестких магнитных дисках к компьютерам IBM PC AT с шиной ISA . С развитием этого интерфейса сфера его использования стала шире, включив другие виды внешних ЗУ. Развитие АТА шло совместно с появлением новых шин расширения, таких как PCI.

В настоящее время существует несколько разновидностей этого интерфейса для подключения устройств IDE (Integrated Device Electronic). Это варианты АТА IDE, E-IDE, АТА-2, Fast АТА-2, АТА-3 и АТА/ АТАPI-4. Наиболее широко распространен интерфейс АТА-2.

Специальные интерфейсы реализуются проще, чем универсальные из-за их узкой специализации, т.к. они ориентированы только на один вид ПУ.

Для подключения клавиатуры используется последовательный синхронный интерфейс, содержащий 2 обязательных сигнала: данных (КВ-DATA) и импульсов синхронизации (KB-Clock). Клавиатура использует прерывание IRQ2. Интерфейс клавиатуры построен на программируемом контроллере i8042, обеспечивающим двунаправленную передачу информации от клавиатуры и к ней.

Интерфейсы манипуляторов зависят от типа устройства. В компьютерах используются три основных вида устройств ввода "мышь"(mouse): Bus Mouse, Serial Mouse, PS/2 Mouse. Ожидается появление мышей с интерфейсом USB.

Bus Mouse применялась в первых ПК, в настоящее время практически не используется.

Serial Mouse – мышь с последовательным интерфейсом подключается через 25- или 9-штырьковый разъем к последовательному порту (COM-порт), имеет встроенный микроконтроллер, который обрабатывает сигналы от координатных датчиков и кнопок. Каждое событие кодируется по интерфейсу RS-232C.

PS/2 Mouse – мышь, появившаяся с компьютерами PS/2. Ее интерфейс и 6-ти штырьковый DIN мини-разъем аналогичен клавиатурному. Контроллер такой мыши входит в контроллер клавиатуры i8042. Для PS/2 Mouse использует прерывание IRQ12.

Для реализации аудиоканалов используются три вида интерфейсов: PC Speaker, цифровой аудиоканал и канал MIDI – устройств (Musical Instrument Device Interface).

PC Speaker – стандартный однонаправленный канал управления звуком рассчитан на подключение высокоомного малогабаритного динамика. Звук формируется из тонального сигнала от второго канала системного таймера. Роль этого звукового канала сводится к подаче гудков при загрузке, идентификация ошибок во время POST, а также к сопровождению сообщений об ошибках.

Цифровой аудиоканал реализуется с помощью средств работы с аудиосигналом, имеющимся на плате Sound Blaster фирмы Creative Labs. Звуковые карты имеют обычно 16 битную шину ISA, PCI или PC Card. Звуковая карта имеет в своем составе цифровой канал записи-воспроизведения моно- и стереофонических сигналов, микшер, синтезатор и MIDI-порт.

Цифровой интерфейс музыкальных инструментов MIDI является двунаправленным последовательным асинхронным интерфейсом с частотой передачи 31, 25 Кбит/сек. Этот интерфейс, разработанный в 1983 г., стал фактически стандартом для сопряжения с компьютером, синтезаторов, записывающих и воспроизводящих устройств, микшеров, устройств специальных эффектов и другой электромузыкальной техники. В интерфейсе применяется токовая петля 10 ма с гальванической развязкой входной цепи. Токовая петля по принципам передачи информации аналогична интерфейсу RS-232C.

Интерфейс видеомониторов между видеоадаптером и монитором может быть как дискретным, так и аналоговым. Для мониторов с высоким разрешением можно использовать только прямую подачу сигналов на входы видеоусилителей базовых цветов – RGB – вход (Red, Green, Blue – красный, зеленый и синий).

Дискретный интерфейс RGBTTL использовал преобразователи цифра-аналог, расположенные в самом мониторе. Это ограничивало качество цветного изображения из-за малого числа кодируемых цветов (до 64-х). Поэтому перешли на аналоговый интерфейс.

Аналоговый интерфейс RGB перенес цифроаналоговые преобразователи сигналов базовых цветов из монитора на графический адаптер. Такой интерфейс с 8 разрядными ЦАП для каждого цвета позволяет выводить 16,7 миллионов цветов (True Color). Этот интерфейс называется RGB Аналог. Кроме передачи изображения по интерфейсу передают информацию, необходимую для автоматизации согласования параметров и режимов монитора и компьютера. Со стороны компьютера имеется специальный дисплейный адаптер, к которому подключается монитор. С его помощью обеспечивается идентификация монитора, необходимая для автоконфигурации и управления энергопотребления монитора.

В настоящее время для передачи управляющей информации используют последовательные интерфейсы I2C (DDC2B) или ACCESS Bus (DDC2AB), которые имеют всего два сигнала данных (DA) и синхронизации (SCL).

Для расширения частотного диапазона, учитывая тенденцию к использованию последовательных шин USB и Fire Wire для подключения монитора, предложен новый тип разъема EVC (Enhanced Video Connector). Кроме обычного аналогового интерфейса RGB и канала управления DDC2 этот разъем имеет контакты для видеовхода, входные и выходные стереоаудиосигналы шин USB и Fire Wire.

 

22. Локальные шины.

Cовременные вычислительные системы характеризуются:

□ стремительным ростом быстродействия микропроцессоров и некоторых внешних устройств

□ появлением программ, требующих выполнения большого количества интерфейсных операций (например, программы обработки графики в Windows, мультимедиа).

В этих условиях пропускной способности шин расширения, обслуживающих одновременно несколько устройств, оказалось недостаточно для комфортной работы пользователей, поскольку компьютеры стали подолгу «задумываться». Разработчики интерфейсов пошли по пути создания локальных шин, подключаемых непосредственно к шине МП, работающих на тактовой частоте МП (но не на внутренней рабочей его частоте) и обеспечивающих связь с некоторыми скоростными внешними по отношению к МП устройствами: основной и внешней памятью, видеосистемами и т. д.

1. Шина VLB (VL-bus, VESA Local Bus) представлена в 1992 году ассоциацией стандартов видеоэлектроники (VESA — торговая марка Video Electronics Standards Association), и поэтому часто ее называют шиной VESA. Шина VLB, по существу, является расширением внутренней шины МП для связи с видеоадаптером и реже с жестким диском, платами мультимедиа, сетевым адаптером. Разрядность шины для данных — 32 бита, для адреса — 30 бит, реальная

скорость передачи данных по VLB — 80 Мбайт/с, теоретически достижимая — 132 Мбайт/с (в версии 2 — 400 Мбайт/с).

Недостатки шины VLB:

О ориентация только на МП 80386, 80486 (не адаптирована для процессоров класса Pentium);

О жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту до 33 МГц);

О малое количество подключаемых устройств — к шине VLB может подключаться только четыре устройства;

О отсутствует арбитраж шины — могут быть конфликты между подключаемыми устройствами.

2. ШинаPCI(Peripheral Component Interconnect, соединение периферийных компонентов) — самый распространенный и универсальный интерфейс для подключения различных устройств. Базовая версия PCI 1.0 (IEEE 1.386 (Institute of Electrical and Electronic Engineers 1.386 — стандарт Института инженеров по электротехнике и электронике 1.386) разработана в 1991 году фирмой Intel с целью создать шину, способную заменить все существующие, часто несовместимые шинные интерфейсы, такие как ISA, EISA, MCA, VLB. Шина PCI 1.0 является намного более универсальной, чем VLB; допускает подключение до 10 устройств; имеет свой адаптер, позволяющий ей настраиваться на работу с любым МП от 80486 до современных Pentium. Тактовая частота PCI 1.0 — 33 МГц, разрядность — 32 разряда для данных и 32 разряда для адреса с возможностью расширения до 64 разрядов, теоретическая пропускная способность 132 Мбайт/с, а в 64-разрядном варианте — 264 Мбайт/с.

Модификация PCI 2.1 работает на тактовой частоте до 66 МГц и при разрядности 64 имеет пропускную способность до 528 Мбайт/с. Осуществлена поддержка режимов Plug&Play, Bus Mastering и автоконфигурирования адаптеров. Конструктивно разъем шины на системной плате состоит из двух следующих подряд секций по 64 контакта (каждая со своим ключом). С помощью этого интерфейса к материнской плате подключаются видеокарты, звуковые карты, модемы, контроллеры SCSI и другие устройства.

Как правило, на материнской плате имеется несколько разъемов PCI. Шина PCI, хотя и является локальной, выполняет и многие функции шины расширения. Шины расширения ISA, EISA, MCA (а она совместима с ними) при наличии шины PCI подключаются не непосредственно к МП (как это имеет место при использовании шины VLB), а к самой шине PCI (через интерфейс расширения). Благодаря такому решению шина является независимой от процессора (в отличие от VLB) и может работать параллельно с шиной процессора, не обращаясь к ней за запросами.

Таким образом, загрузка шины процессора существенно снижается. Например, процессор работает с системной памятью или с кэш-памятью, а в это время по сети на жесткий диск пишется информация. Конфигурация системы с шиной PCI показана на рис. 10.2. В настоящее время разработано несколько модификаций этой шины, в частности, стандарта AGP (графический вариант).

Рис. 10.2. Конфигурация системы с шиной PCI

 

3. Шина AGP (Accelerated Graphics Port — ускоренный графический порт) — интерфейс для подключения видеоадаптера к отдельной магистрали AGP, имеющей выход непосредственно на системную память. Разработана шина на основе стандарта PCI v2.1.

Шина AGP может работать с частотой системной шины до 133 МГц и обеспечивает высочайшую скорость передачи графических данных. Ее пиковая пропускная способность в режиме четырехкратного умножения AGP4x (передаются 4 блока данных за один такт) имеет значение 1066 Мбайт/с, а в режиме восьмикратного умножения AGP8x — 2112 Мбайт/с. По сравнению с шиной PCI в шине AGP устранена мультиплексированность линий адреса и данных (в PCI для удешевления конструкции адрес и данные передаются по одним и тем же линиям) и усилена конвейеризация операций чтения-записи, что позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Первые версии AGP предусматривали возможность подключения только одного устройства (видеоконтроллера), а начиная с версии 3 — двух устройств. Шина AGP имеет два режима работы: DMA и Execute. В режиме DMA основной памятью является память видеокарты. Графические объекты хранятся в системной памяти, но перед использованием копируются в локальную память карты. Обмен ведется большими последовательными пакетами. В режиме Execute системная и локальная память видеокарты логически равноправны. Графические объекты не копируются в локальную память, а выбираются непосредственно из системной. При этом приходится выбирать из памяти относительно малые случайно расположенные куски. Поскольку системная память выделяется динамически, блоками по 4 Кбайт, в этом режиме для обеспечения приемлемого быстродействия предусмотрен механизм, отображающий последовательные адреса фрагментов на реальные адреса 4-кило-байтовых блоков в системной памяти. Эта процедура выполняется с использованием специальной таблицы (Graphic Address Re-mapping Table, или GART), расположенной в памяти. Интерфейс выполнен в виде AGP-видео-адаптера, устанавливаемого в отдельный разъем. Конфигурация системы с шиной AGP показана на рис. 10.3.

Рис. 10.3. Конфигурация системы с шиной AGP

 

В настоящее время семейство шин PCI (кроме PCI 1.0, PCI 2.1) имеет следующие версии:

□ PCI 2.2 с рабочей частотой 133 МГц и пропускной способностью 1066 Мбит/с;

□ PCI X 266 (PCI DDR - Double Data Rate) с удвоенной рабочей частотой и пропускной способностью 2100 Мбайт/с;

□ PCI X 533 (PCI QDR — Quard Data Rate) с учетверенной рабочей частотой и пропускной способностью 4300 Мбайт/с;

□ Compact PCI и Mini PCI для промышленных и портативных компьютеров;

□ семейство последовательных интерфейсов PCI Express, которое будет рассмотрено несколько дальше.

Ожидается также версия беспроводной шины PCI.

23. Опертивная память ОЗУ

Операти́вная па́мять (англ. Random Access Memory, RAM, память с произвольным доступом; ОЗУ (оперативное запоминающее устройство); комп. жарг. память,оперативка) — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором.

Обмен данными между процессором и оперативной памятью производится:

§ непосредственно;

§ через сверхбыструю память 0-го уровня — регистры в АЛУ, либо при наличии аппаратного кэша процессора — через кэш.

Содержащиеся в современной полупроводниковой оперативной памяти данные доступны и сохраняются только тогда, когда на модули памяти подаётся напряжение. Выключение питания оперативной памяти, даже кратковременное, приводит к искажению либо полному разрушению хранимой информации.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим сна, что значительно сокращает уровень потребления компьютером электроэнергии. В режиме гибернации питание ОЗУ отключается. В этом случае для сохранения содержимого ОЗУоперационная система (ОС) перед отключением питания записывает содержимое ОЗУ на устройство постоянного хранения данных (как правило, жёсткий диск). Например, в ОС Windows XP содержимое памяти сохраняется в файл hiberfil.sys, в ОС семейства Unix — на специальный swap-раздел жёсткого диска.

В общем случае, ОЗУ содержит программы и данные ОС и запущенные прикладные программы пользователя и данные этих программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер под управлением ОС.

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный внешний модуль или располагаться на одном кристалле с процессором, например, в однокристальных ЭВМ или однокристальных микроконтроллерах.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.