Сделай Сам Свою Работу на 5

Управления в условиях неопределённости





ВВЕДЕНИЕ

Условия эксплуатации современных технологических комплексов приводят к необходимости учета в процессе контроля и управления следующих видов неопределенности:

1. Низкая точность оперативной информации, получаемой с объектов управления, возникающая ввиду большой погрешности датчиков замера технологических параметров (расхода, давления и т.д.), их невысокой надежности, отказов каналов связи, большого запаздывания при передаче информации по уровням управления отсутствия возможности замеров параметров во всех точках технологического процесса, необходимых для моделей.

2. Неточность моделей объектов контроля и управления, вызванная: неэквивалентностью решений системных многоуровневых иерархических моделей и используемых на практике отдельных локальных задач; неверно проведенной декомпозицией общей задачи управления, излишней идеализации модели технологического процесса, разрыва существенных связей в технологическом комплексе, линеаризации, дискретизации, замены фактических характеристик оборудования паспортными, нарушения допущений, принятых при выводе уравнений (стационарности, изотермичности, однородности и т.д.).



3. Нечеткость в процессе принятия решенийв многоуровневых иерархических системах, обусловленная тем, что наличие четких (точных) целей и координирующих решений на каждом уровне контроля и управления, и для каждого локального устройства регулирования затрудняет процесс координации и предопределяет длительный итеративный характер согласования решений.

4. Наличие человека-оператора в т.ч.диспетчера в контуре управления и ведение процесса координации в реальной производственной системе на естественном языке, приводит к необходимости учета трудностей представления знаний диспетчера в виде алгоритмов и согласованности полученного ЭВМ решения с его оценкой.

 

«Излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. Многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ,оставались и остаются в стороне лишь по той причине, что они не поддаются математической трактовке».



Л.Заде

Среди современных производственных процессов найдется немало таких, которые обладают комплексом неожиданных для классической теории автоматического управления (ТАУ) качеств. Этим «неудобным» или, как их еще принято называть, «слабоструктурированным» или «плохо определенным» объектам присущи такие свойства, как уникальность, отсутствие формализуемой цели существования и оптимальности, нестационарность структуры и параметров, неполнота или практически полное отсутствие формального описания объекта.

Концептуальные основы

управления в условиях неопределённости

Факторы неопределённости,под которыми понимают источники неопределенности, достаточно условно подразделяются на следующие три большие группы:

1. неопределенность и неполнота информации об обстановке, которая используется для принятия решения по оценке качества функционирования или формирования управления функционированием системы - фактор неопределенности системы и среды;

2. факторы, порождаемые неопределенностью, нечеткостью мышления и знаний человека- неопределенность, проявляющаясяпри взаимодействии человека с системой и окружающей его средой;

3. факторы, обусловленные неопределенностью, нечеткостью(неточностью) накопленного знания, сосредотачиваемого в базахзнаний искусственных интеллектуальных систем, неопределенностью оперирования этим знанием в процессе осуществления тех или иныхлогических и логико-алгебраических процедур сбора и обработки информации, выработки, выбора и принятия управленческих решений.



Классификация факторов (источников) неопределённости, требующих своего учёта при исследовании сложных систем, приведена на рис.В.1.

 

Рис.В.1. Классификация факторов неопределенности

Методология анализа и учёта факторов неопределённости при

управлении в сложных организационно-технических системах ...

(АСУ с СППР и СПР-системы поддержки принятия решений и системы принятия решений)

1. Проблемы и обобщённая формализация задач выработки и при-

нятия управленческих решений в условиях неопределённости ….

2. Детерминистический игровой подход принятия решений в усло-

виях неопределённости …………..……………..……………………..

3. Стохастический подход к решению задач принятия решений в

условиях неопределённости …..………………………………………

4. Вероятностно - статистический подход принятия решений в ус-

ловиях неопределённости ……………………………………………..

5. Вероятностный подход принятия решений в условиях неопреде-

лённости …..………………………………………………………………

6. Нечётко - стохастический подход принятия решений в условиях

неопределённости ……………………………..………………………..

7. Теория возможностей и проблема принятия решений в условиях

неопределённости …………………….…………………………………

8. Нечётко - возможностный подход принятия решений в условиях

неопределённости ……………………………………………………….

9. Лингвистический подход принятия решений в условиях неопре-

делённости ..………………………..………………………………….

 

Управление слабоструктурированными объектами представляет с точки зрения классической ТАУ довольно сложную, практически неразрешимую задачу. Это вызвано тем, что при построении традиционной системы автоматического управления (САУ) необходимо предварительно формально описать объект управления и сформировать критерии управления на базе математического аппарата, оперирующего количественными категориями. В случае, если невозможно дать точное математическое описание объекта и критериев управления им в количественных терминах, традиционная ТАУ оказывается неприменимой.

К примеру, классическая ТАУ детерминированными и стохастическими системами успешно применяется для построения САУ летательными аппаратами, энергетическими установками и т.п., но попытки распространения традиционных методов на такие области, как биосинтез, многофазные химико-технологические процессы, связанные с обжигом, плавкой, катализом и т.п., не дали ощутимых практических результатов, несмотря на все более усложняющиеся математические методы их описания.

Однако, на практике подобными слабоструктурированными объектами достаточно успешно управляет человек-оператор, которого выручают способности наблюдать, анализировать и запоминать информацию, делать определенные выводы и.т.п., и, как следствие, принимать правильные решения в обстановке неполной и нечеткой информации. Благодаря своему интеллекту, человек может оперировать не только с количественными (что в определенной степени может и машина), но и с качественными неформализованными понятиями, вследствие чего довольно успешно справляется с неопределенностью и сложностью процесса управления. Поэтому построение моделей приближенных рассуждений человека и использование их в САУ представляет сегодня одно из важнейших направлений развития ТАУ.

Не вызывает сомнений, что существенное повышение эффективности управления сложными объектами заключается в создании интеллектуальных САУ, способных в той или иной степени воспроизводить определенные интеллектуаль-ные действия человека, связанные с приобретением, анализом, классификацией знаний в предметной области управления технологическим процессом, а также оперирующих знаниями, накопленными человеком-оператором или самой системой в ходе практической деятельности по управлению объектом.

Необходимость работы в этих условиях затрудняет использование стандартных систем автоматики и АСУ ТП. Особенно сложным является описание областей допустимых режимов работы оборудования в таких условиях, когда задание жестких (четких) ограничений для АСУ ТП и систем автоматики приводят к автоматическому или ручному отключению этих систем. Поэтому крайне важной представляется возможность использования для описания и формализации областей допустимых режимов работы оборудования теории искусственного интеллекта (ИИ) и интеллектуальных систем (ИС).

В связи с бурным развитием вычислительной техники в последнее время началось использование новых методов интеллектуального управления в промышленности. И хотя первые применения интеллектуальных САУ состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления промышленными роботами, ректификационными установками и доменными печами до стиральных машин, пылесосов и СВЧ-печей. При этом интеллектуальные САУ позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию возмущающих факторов по сравнению с традиционными САУ.

 

Под интеллектуальной системой понимается (К.А. Пупков) объединенная информационным процессом совокупность технических средств и программного обеспечения, работающую во взаимосвязи с человеком (коллективом людей) или автономно, способную на основе сведений и знаний при наличии мотивации синтезировать цель, принимать решение к действию и находить рациональные способы достижения цели.

. Главная архитектурная особенность, которая отличает интеллектуальные системы управления (ИСУ) от "традиционных" – это механизм получения, хранения и обработки знаний для реализации своих функций.

В основе создания интеллектуальных систем управления лежат два принципа: ситуационное управление (управление на основе анализа внешних ситуаций или событий) и использование современных информационных технологий обработки знаний (экспертные системы, искусственные нейронные сети, нечеткая логика, генетические алгоритмы и ряд других).

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.