Сделай Сам Свою Работу на 5

Малые свободные колебания механических систем с двумя степенями свободы. Главные колебания.





Из уравнений движения консервативной механической системы около устойчивого положения равновесия

в случае двух степеней свободы имеем:

 

(1)

 

(Согласно критерию Сильвестра:

 

(1) система дифференциальных уравнений малых свободных колебаний механической системы с двумя степенями свободы около устойчивого положения равновесия. Ее решение ищется в виде:

 

(2)

 

Подстановка этого решения в систему дифференциальных уравнений малых колебаний дает:

 

(3)

 

Относительно A и B это система однородных алгебраических уравнений. Она имеет нетривиальное решение, когда определитель системы равен нулю:

 

 

или

 

(4)

Это биквадратное уравнение называется уравнением частот, оно имеет два положительных корня , которым соответствуют два решения системы дифференциальных уравнений малых колебаний:

 

 

Таким образом, каждая обобщенная координата находится как сумма двух колебаний разной частоты, которые называются главными колебанииями. При этом, как следует из системы (3), амплитуды главных колебаний связаны между собой следующим образом:



 

(5)

 

где коэффициенты формы главных колебаний.

В итоге решение уравнений свободных колебаний (1) окончательно принимает вид:

(6)

 

Входящие в(6) амплитуды , и начальные фазы , колебаний определяются из начальных условий.

 

 

Вынужденные колебания механических систем с двумя степенями свободы. Динамический гаситель колебаний

Исключение нежелательных колебаний в механических системах называется виброзащитой (демпфированием).Используемые при этом технические устройства называются виброгасителями (демпферами).

Принцип работы динамического гасителя основан на использовании явления антирезонанса, когда действие периодически изменяющейся возмущающей обобщенной силы соответствующей одной координате, нейтрализуется действием потенциальной обобщенной силы, соответствующей другой координате.

Пусть к механической системе помимо консервативных сил приложена возмущающая сила, которая изменяется с течением времени по гармоническому закону

Дифференциальные уравнения движения механической системы в этом случае имеют вид:



 

Общее решение системы линейных дифференциальных неоднородных( в данном случае) уравнений ищем как сумму двух решений: ,— общее решение системы однородных дифференциальных уравнений; —частное решение системы неоднородных дифференциальных уравнений.

С учетом зависимости возмущающей силы от времени частное решение ищется в виде

Подстановка его в систему дифференциальных уравнений дает:

 

Решая эту систему по правилу Крамера, получим

 

Поскольку совпадает с левой частью уравнения частот и обращается в ноль

при совпадении частоты возмущающей силы с одной из частот собственных

колебаний или Коэффициенты A и B при этом обращаются в бесконечность. Таким образом, в случае колебаний системы с двумя степенями свободы существуют две резонансные частоты

Общее решение системы дифференциальных уравнений вынужденных

колебаний при имеет вид:

Как видно, за счет выбора параметров колеблющейся системы можно добиться, например, выполнения условия А =0, т. е. амплитуда вынужденных колебаний, соответствующих первой обобщенной координате, обращается в ноль.

Такое явление и называется антирезонансом.

В рассматриваемом случае это имеет место, если

 

Основные понятия и гипотезы теории удара. Основное уравнение теории удара

Явление, при котором за малый промежуток времени, т.е. почти мгновенно, скорости точек материальных объектов изменяются на конечные величины, называется ударом.

Так как при ударе конечное изменение скоростей происходит за весьма малый промежуток времени, то при этом возникают очень большие ускорения, а, следовательно, и очень большие силы. Эти силы действуют в течение весьма малого промежутка времени, но их импульсы за этот промежуток времени являются конечными величинами.



Силы, возникающие при ударе в течение малого промежутка времени, но достигающие при этом большой величины, так что их импульсы за этот промежуток времени являются конечными величинами, называются ударными силами.

Малый промежуток времени, в течение которого длится удар, называется временем удара. Импульсы ударных сил за время удара называются ударными импульсами.

Пусть дана МТ массы m, которая движется под действием обычной (неударной) силы . В момент , когда рассматриваемая МТ имеет скорость – скорость до удара, на нее начинает действовать ударная сила , действие которой прекращается в момент . Определим движение МТ под действием сил и за время удара .

Применяя теорему об изменении количества движения точки, получим:

,

где – скорость точки в момент после удара.

По теореме о среднем значении определенного интеграла можно написать:

,

где и есть средние значения сил и в некоторый промежуток времени. При этом является конечной величиной; ударная сила за время удара достигает весьма большой величины (порядка ). Поэтому произведение будет пренебрежимо мало по сравнению с произведением , являющимся величиной конечной.

Итак, импульсами неударных сил за время удара будем пренебрегать по сравнению с импульсами ударных сил.

Окончательно получим:

. (1)

В рассматриваемой элементарной теории удара (1) принимается в качестве основного уравнения: Изменение количества движения МТ за время удара равно действующему на эту МТ ударному импульсу.

(1) играет такую же роль в теории удара, как второй закон динамики при изучении движений под действием обычных сил.

Проектируя векторное равенство (1) на координатные оси, получим три следующих уравнения:

(2)

Определим перемещение точки за время удара.

Так как , где – радиус-вектор, определяющий положение данной МТ относительно некоторой системы отсчета, то уравнение (1) можно записать следующим образом:

Проинтегрировав это равенство в пределах от до , найдем:

,
где есть среднее значение ударного импульса за время удара . Учитывая при этом, что и суть величины конечные, а - весьма мало, приходим к выводу, что будет близко к нулю и, следовательно, за время удара перемещение МТ практически равно нулю.

Таким образом, перемещением МТ за время удара можно пренебречь

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.