Сделай Сам Свою Работу на 5

Низкочастотные электрические и магнитные поля





Электрическое поле человека существует на поверхности тела и снаружи, вне его.

Электрическое поле вне тела человека обусловлено главным образом трибозарядами, то есть зарядами, возникающими на поверхности тела вследствие трения об одежду или о какой-либо диэлектрический предмет, при этом на теле создается электрический потенциал порядка нескольких вольт. Электрическое поле непрерывно меняется во времени: во-первых, происходит нейтрализация трибозарядов - они стекают с высокоомной поверхности кожи с характерными временами - 100 - 1000 с; во-вторых, изменения геометрии тела вследствие дыхательных движений, биения сердца и т.п. приводят к модуляции постоянного электрического поля вне тела.

Еще одним источником электрического поля вне тела человека является электрическое поле сердца. Приблизив два электрода к поверхности тела, можно бесконтактно и дистанционно зарегистрировать такую же кардиограмму, что и традиционным контактным методом (см. гл. 5). Отметим, что этот сигнал во много раз меньше, чем поле трибозарядов.

В медицине бесконтактный метод измерения электрических полей, связанных с телом человека, нашел свое применение для измерения низкочастотных движений грудной клетки.



При этом на тело пациента подается переменное электрическое напряжение частотой - 10 МГц, а несколько антенн-электродов подносят к грудной клетке на расстоянии 2-5 см. Антенна и тело представляют собой две обкладки конденсатора. Перемещения грудной клетки меняет расстояние между обкладками, то есть емкость этого конденсатора и, следовательно, емкостной ток, измеряемый каждой антенной. На основании измерений этих токов можно построить карту перемещений грудной клетки во время дыхательного цикла. В норме она должна быть симметрична относительно грудины. Если симметрия нарушена и с одной стороны амплитуда движений мала, то это может свидетельствовать, например, о скрытом переломе ребра, при котором блокируется сокращение мышц с соответствующей стороны грудной клетки.

Контактные измерения электрического поля в настоящее время находят наибольшее применение в медицине: в кардиографии и электроэнцефалографии.



Магнитное полетела человека создается токами, генерируемыми клетками сердца и коры головного мозга. Оно исключительно мало —10 млн. - 1 млрд. раз слабее магнитного поля Земли. Для его измерения используют квантовый магнитометр. Его датчиком является сверхпроводящий квантовый магнитометр (СКВИД), на вход которого включены приемные катушки. Этот датчик измеряет сверхслабый магнитный поток, пронизывающий катушки. Чтобы СКВИД работал, его надо ох­ладить до температуры, при которой появляется сверхпроводимость, т. е. до температуры жидкого гелия (4 К). Для этого его и приемные катушки помещают в специальный термос для хранения жидкого гелия - криостат, точнее, в его узкую хвостовую часть, которую удается максимально близко поднести к телу человека.

В последние годы после открытия « высокотемпературной сверхпроводимости» появились СКВИДы, которые достаточно охлаждать до температуры жидкого азота (77 К). Их чувствительность достаточна для измерения магнитных полей сердца.

Индукция магнитного организма человека и окружающей среды:

Сердце – 10^-11 Тл; мозг-10^-13 Тл; поле Земли -5*10^-5 Тл; геомагнитный шум - 10^-8 - 10^-9 Тл; магнитная ЯМР томография - 1Тл.

Как видно, магнитное поле, создаваемое организмом человека, на много порядков меньше, чем магнитное поле Земли, его флуктуации (геомагнитный шум) или поля технических устройств. Чтобы от них отстроиться, измеряют не само магнитное поле, а его градиент, то есть его изменение в пространстве. В каждой точке пространства полная индукция В магнитного поля есть сумма индукций полей помехи Вп и сердца Вс, а именно В = Вп + Вс, причем Вп > Вс. Поле помех: Земли, металлических предметов (труб отопления), проезжающих по улице грузовиков и т.д. - медленно изменяется по пространству, в то время как магнитное поле сердца или мозга спадает быстро при удалении от тела.



По этой причине индукции магнитного поля помех Вп1 и Вп2, измеренные непосредственно на поверхности тела и на расстоянии, скажем, 5 см от него, практически не отличаются: Вп1 = Вп2, а индукции поля Вс1 и Вс2, создаваемого сердцем в этих же точках, отличаются почти в 10 раз: Вс1 » Вс2. Поэтому, если вычесть друг из друга два значения измеряемой индукции магнитного поля В1 и В2, то разностный сигнал В1 – В2 = Вс1- Вс2 практически не содержит вклада от помехи, а сигнал от сердца лишь слабо исказится. Для реализации, описанной простейшей схемы - градиометра первого порядка - можно использовать две параллельные друг другу катушки, расположенные одна за другой на расстоянии в несколько сантиметров и включенные навстречу друг другу. В настоящее время используют более сложные конструкции - градиометры второго порядка (их датчик содержит более двух катушек). Эти устройства позволяют измерять магнитоэнцефалограммы непосредственно в клинике.

Магнитокардиограмма и динамическая магнитная карта человека. Источник магнитного поля сердца человека тот же, что и электрического, - перемещающаяся граница области возбуждения миокарда. Различают два способа исследования этого поля: (1) измерение магнитокардиограмм (МКГ) и (2) построе­ние динамической магнитной карты (ДМК). В первом случае измерение проводят в какой-то одной точке над сердцем, в результате получают зависимости величины магнитного поля от времени, зачастую совпадающие по форме с традиционными электрокардиограммами. Чтобы построить динамическую магнитную карту, необходимо измерить набор МКГ в разных точках над сердцем. Для этого пациента на специальной немагнитной кровати перемещают вблизи неподвижного датчика. Поле измеряется в области 20 х 20 см^2 по сетке из 6 х 6 элементов, т.е. всего в 36 точках. В каждой точке записывают несколько периодов сердечного цикла, чтобы усреднить записи, затем перемещают пациента так, чтобы измерить следующую точку. Затем в определенные моменты времени, отсчитываемые от R-пика, строят мгновенные динамические магнитные карты. Каждая ДМК соответствует определенной фазе сердечного цикла.

Основные медицинские применения измерений магнитных полей тела человека - это магнитокардиография (МКГ) и магнитоэнцефалография (МЭГ). Достоинством МКГ по сравнению с традиционной электрокардиографией (ЭКГ) является возможность локализовать источники поля с высокой точностью порядка 1 см. Это связано с тем, что динамические магнитные карты позволяют оценить координаты токового диполя.

Инфракрасное излучение. Наиболее яркую информацию о распределении температуры поверхности тела человека и ее изменениях во времени дает метод динамического инфракрасного тепловидения. В техническом отношении это полный аналог телевидения, только датчик измеряет не оптическое излучение, отраженное от объекта, которое видит человеческий глаз, как в телевидении, а его собственное, не видимое глазом, инфракрасное излучение. Тепловизор состоит из сканера, измеряющего тепловое излучение в диапазоне длин волн от 3 до 10 мкм, устройства для сбора данных и ЭВМ для обработки изображения. Диапазон 3-10 мкм выбран потому, что, именно в этом диапазоне наблюдаются наибольшие отличия интенсивности излучения при изменении температуры тела. Простейшие сканеры собраны по следующей схеме: тепловое излучение от разных участков тела последовательно, с помощью колеблющихся зеркал, проецируют на один приемник инфракрасного излучения, охлаждаемый жидким азотом. Изображение имеет формат 128 х 128 элемента или 256 х 256, то есть по четкости мало уступает телевизионному. Тепловизоры передают в 1 секунду 16 кадров. Чувствительность тепловизора при измерении одного кадра - порядка 0,1 К, однако ее можно резко увеличить, используя ЭВМ для обработки изображений.Тепловидение в биологии и медицине.Наиболее яркий результат применения тепловидения в биологии (это обнаружение и регистрация пространственного распределения температуры коры головного мозга животных - родился фактически новый раздел физиологии - термоэнцефалоскопия). Для измерений тепловизор наводят на поверхность черепной коробки, с которой предварительно снимают скальп.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.