Сделай Сам Свою Работу на 5

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ СТРУКТУРЫ КРИСТАЛЛОВ





127. Найдите зависимость между коротковолновой границей тормозного рентгеновского спектра и ускоряющим напряжением, приложенным к трубке.

128. При увеличении напряжения на рентгеновской трубке в полтора раза длина волны коротковолновой границы сплошного рентгеновского спектра изменилась на Äë = 10 пм. Найдите первоначальное напряжение на трубке.

129. Можно ли найти координаты атомов структурными методами анализа (рентгеновская, электронная или нейтронная дифракции), если образец представляет собой: а) монокристалл, б) поликристалл, в) текстуру.

130. Может ли á K -излучение железа вызвать вторичное рентгеновское излучение К-серии хрома и кобальта?

132. Найдите формулу расчета F(hkl) для кристаллов с ячейкой Бравэ F-типа.

133. Определите правила погасания для кристаллов с ячейкой Бравэ I-типа.

134. Запишите формулу для расчета структурной амплитуды кристаллов с центром симметрии и кристаллов с осью 2z.

135. Выведите уравнение Вульфа-Брэгга.

136. Получите из построения Эвальда соотношение Вульфа-Брэгга.

146. Установите связь между ускоряющим напряжением в электронной пушке и длиной волны электрона.



147. Чему равно ускоряющее напряжение в электронной пушке, если длина волны электрона равна 0.1226 oA ?

148. Найдите , если  = 300 , а d n = 2.5 oA .

 

149. Опишите принципы рентгеновского, электронографического и нейтронографического фазовых анализов (качественного и количественного) двухфазной системы.

Задача 149. Простейший алгоритм фазового анализа двухкомпонентной системы следующий.

1. Исследуется химический состав образца.

2. По химическому составу рассматриваются возможные кристаллохимические фазы.

3. Производится съемка рентгенограммы образца с последующим определением dn и I (межплоскостных расстояний и интенсивностей рефлексов).

4. Для всех кристаллических фаз, возможных для данного состава образца, либо выбираются из таблиц значения dn и I, либо определяются экспериментально, если конкретную фазу можно исследовать в чистом виде.

5. Сравнивая значения dn, I образца с таблицами dn и I отдельных фаз, определяется их наличие или отсутствие в образце.

6. Определив фазовый состав образца, переходят к количественному анализу, для чего составляются эталонные образцы с известным содержанием этих двух фаз.



7. Получают рентгенограммы от эталонных смесей и находят зависимость отношений I 1 /I 2 = f (C 1), которую обычно изображают графически. Индексы 1 и 2 относятся к фазам, кроме того, C1 + C2 = 1. Съемку рентгенограмм эталонов проводят по той же методике, что и съемка исследуемого образца.

8. По рентгенограмме образца находят отношение интенсивностей рефлексов, для которых построена функция I1/ I2= f(C) , и по эталонному графику находят C1 = 1 - C2 . На практике возможны модификации приведенного стандартного алгоритма качественного и количественного рентгеновского фазового анализа. Если вместо рентгеновского излучения используют электронные или нейтронные пучки, то в этом случае реализуются методики качественного и количественного электронографического (или нейтронографического) фазового анализа двухкомпонентной системы по описанному алгоритму.

xx. Доказать, что, в соответствии с правилами Браве, гранецентрированная тетрагональная решетки Браве сводится к объемно-центрированной.

Хх. См. рис. Хх.

xx.Связь между размерами элементарной ячейки в гексагональной (aH,cH) и ромбоэдрической (aR, aR) установками.

xx. aH=2aRsin(aR/2), cH=aR[(9-12sin2(aR/2)]1/2

aR=[(3aH2+cH2)1/2/3, sin(aR/2)=3/{2[3+(cH/aH)2]1/2

 

 
 

xx. Вывести уравнение Брэгга-Вульфа 2dsinq = nl.

xx. Разность хода лучей 1 и 2 (см. рис. Хх) равна:

D = AB + BC – AD = 2dsinQ – ACcosQ = 2d/sinQ - 2dcosQ/tgQ =

(2d/sinQ)(1 - cos2Q) = 2dsinQ = nl.

 

хх. Определить зависимость погрешности определения величины межплоскостного расстояния Dd от угла отражения Q.



xx. 2dsinQ = nl, d = nl/2sinQ, Dd = -nlcosQDQ/2sin2Q = -nlcosQDQ/(nl/2d)2sinQ = -2dtgQDQ.

 

Хх. Пример вывода всех черно-белых групп GM из группы G = 2/m приведен в таблице хх.

 

Таблица хх. Вывод черно-белых групп GM из кристаллографической группы G = 2/m = {1,2,i,m}.
H 2 = {1,2} m = {1,m} 1= {1,i}
G/H {i,m} {2,i} {2,m}
(G/H)1' {i',m'} {2',i'} {2',m'}
H ∪ (G/H)1' {1,2,i',m'} {1,2',i',m} {1,2',i,m'}
GM 2/m' 2'/m 2'/m'

 

 

 
 

 

 


Задачи по термодинамике

xx. Вычислить работу, совершенную идеальным газом при адиабатическом расширении от объема V1 до объема V2.

Хх. A = ∫V1V2pdV = ∫V1V2RTdV/V = RTln(V2/V1) (p = RT/V)

 

xx. Определить зависимость давления идеального газа от температуры по молекулярно-кинетической теории.

хх. fixDt= Dpix=2miuix; Dt=2l/uix, fix = miuix2/l.

Dt – время столкновения между двумя последовательными ударами о стенку куба с длиной ребра l.

Fx=Sifix, px=Fx/l2=py=pz=p, 3p=(l/l2)Simiui2/l.

pV=(1/3)Simiui2 = (2/3)noW

no – число молекул в единице объема, W=mu2/2 – средняя кинетическая энергия поступательного движения молекулы газа

pV=(1/3) Simiui2 =nmu2/3

p=(2/3)noW (уравнение Клаусиуса)

Для одного моля газа pV = (2/3)NAW=(2/3)NA3kBT/2=RT.

(Объем одного моля равен 22,4 л, R=8,3 Дж/моль К).

W=mu2/2, W=mu2/2=3kBT/2, p=nokBT, kB=R/NA.

 

хх. Идеальный газ с температурой Т расширяется из объема V1 в вакуум в отсутствие теплообмена. Объем конечного состояния равен V2. Определить увеличение энтропии системы.

Хх. dS=pdV/T +dU/T=RdV/V, DS= Rln(V2/V1). (pV=RT)

 

хх. Определить изменение энтропии N молей идеального газа при изменении температуры от T1 до T2 при а) постоянном давлении, б) при постоянном объеме.

Хх. a) dSp=cpdT/T, DSp=cpln(T1/T2);

б) dSV=cVdT/T, DSV=cVln(T2/T1).

 

хх. Определить КПД тепловой машины, работающей по циклу Карно.

Хх.

 

хх. Установить, что для любой простой системы, подверженной действию обобщенной силы А, сопряженной внешнему параметру а, справедливо соотношение (∂T/∂A)a(∂A/∂a)T(∂a/∂T)A=-1.

Хх. dA=(∂A/∂a)Tda + (∂A/∂T)adT,

при dA=0 (∂A/∂a)T(∂a/∂T)A + (∂A/∂T)a=0, →

(∂T/∂A)a(∂A/∂a)T(∂a/∂T)A=-1.

При A=p, a=V, a= (1/Vo1)(∂V/∂T)p, b=(1/Vo2)(∂V/∂p)T, g=(1/po))(∂p/∂T)V.

aVo1/bVo2g ≈ a/bg= -po.

 

хх. Вычислить вероятность передачи теплоты 10-7 Дж от тела с температурой Т1=301 К к телу с T2=300 К и наоборот.

хх. DS=S2-S1= 10-7/300-10-7/301= kln(w2/w1); w2/w1=exp(DS/k) ≈ exp(1012/12 = (100010)10.

На каждые (100010)10 случаев перехода 10-7 Дж от тела с Т1=301 К к телу с T2=300 К может произойти один переход того же количества теплоты от тела с T2=300 К к телу с Т1=301 К.

 

хх. Определить зависимость химического потенциала идеального газа от давления при постоянной температуре.

Хх. dG = -SdT + Vdp + mdn При T=const V = nRT/p = (∂G/∂p)T,n,

Интегрируя получим: G = Go + nRTln(p/po)

m = (∂G/∂n)T = mo + RTln(p/po)

 

Хх. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285,8 и -241,8 кДж/моль, соответственно. Рассчитать энтальпию испарения воды при этой температуре.

Хх. 1. H2 (г) +O2 (г) = H2O (ж) DHo1=-285,8

2. H2 (г) +O2 (г) = H2O (т) DHo2=-241,8

3. H2O (ж) = H2O (г) DHo3 = ??

DHo1 + DHo3 = DHo2 DHo3= 44,0 Дж/моль.

 

хх. Рассчитать энтальпии реакции 6C (г) + 6H (г) = C6H6 (г) по а) энтальпиям образования DfHo(C6H6) (газ) =82,93, DfHo(C) (газ) =716,68, DfHo(H) (газ) =217,97; б) по энергиям связи, в предположении, что двойные связи в молекуле C6H6 фиксированы: E(C-C)=348, E(C-H)=412, E(C=C)=612.

Хх. а). DrHo = 82,93 -6*716,68 – 6*217,97 = -5525 кДж/моль.

б). В приближении двойных связей молекула C6H6 содержит шесть связей C-H, три связи C-C и три связи C=C.

DrHo = -(6·412 + 3 ·348 + 3·612) = -5352 кДж/моль.

 

21. Определить теплоту реакции образования алмаза из графита, зная теплоты сгорания графита и алмаза.

Хх. С (графит) + O2 (газ) = CO2 (г) DH=-393,51 кДж/моль

С (алмаз) + O2 (газ) = CO2 (г) DH=+395,41 кДж/моль

С (графит) = С (алмаз) DH=+1,9 кДж/моль

 

1.3. Изменение теплоты в зависимости от температуры и объема в некоторой системе описывается уравнением:

δQ = CdT + (RT/V)dV

(C и R - постоянные). Является ли теплота функцией состояния в данном случае? Ответ обоснуйте.

1.3. δQ = [¶QV/¶T]dT + [¶QT/¶V])dV = A(T,V)dT + B(T,V)dV.

Условие того, что δQ полный дифференциал: (¶A/¶V)T = (¶B/¶T)V

2QV/¶T¶V = 0; ¶2QT/¶V¶T = R/T) не выполняется.

 

1.4. Уравнение состояния системы имеет вид p = p(T,V). Доказать, что между частными производными существует соотношение

(¶p/¶T)V(¶T/¶V)p(¶V/¶p)T = -1.

1.4. W(T, V, p) = 0. Задает неявно p = z(V,T).

dp = (¶p/¶T)VdT + (¶p/¶V)TdV

при p = const

0 = (¶p/¶T)V(∂T/∂V)p + (¶p/¶V)T ⇒ (¶p/¶T)V(¶T/¶V)p(¶V/¶p)T = -1.

a =(¶V/¶T)p/Vo1 – изобарический коэффициент теплового расширения (p = const), b = (¶p/¶T)V/po – термический коэффициент давления (V = const), k = -(¶V/¶p)T/Vo2 – изотермическая сжимаемость. Отсюда:

pobk Vo2/Vo1a ≈ pobk/a = -1.

 

1.5. Доказать, что между адиабатической сжимаемостью ba = -(1/V) (¶V/¶p)a и изотермической сжимаемостью bT = - (1/V)(¶V/¶p)T имеется соотношение ba = bT (CV/Cp).

ХХХххх.

 

1.6. Вычислить работу, производимую N молями идеального газа при изотермическом расширении от начального объема V1 до конечного объема V2 .

1.6. A = ∫V1V2pdV = NRTln(V2/V1)

1.7. Вычислить работу, совершаемую идеальным газом при адиабатическом расширении от объема V1 до объема V2 .

Ххххххх

 

1.8. Внутренняя энергия e единицы объема газа зависит только от T, а уравнение состояния имеет вид p = e(T)/3. Найти внутреннюю энергию и энтропию газа.

ХХххххх

 

1.9. Доказать, что внутренняя энергия системы, уравнение состояния которой имеет вид p= f(p)T не зависит от объема.

ХХхххххх

 

1.10. Идеальный газ, имеющий температуру T, расширяется из объема V1 в вакуум в отсутствие теплообмена. Объем конечного состояния равен V2 . Определить увеличение энтропии газа.

1.10. dS = (p/T)dV = RdV/V, DS = Rln(V2/V1). (p = RT/V)

 

1.11. Определить изменение энтропии N молей идеального газа при изменении его температуры от T1 до T2 : а) при постоянном давлении, б) при постоянном объеме.

1.11. a) dSp = CpdT/T, DSp = Cpln(T2/T1).

б) dSV = CVdT/T, DSV = CVln(T2/T1).

 

1.12. В двух частях сосуда, разделенных выдвижной перегородкой, находятся два различных идеальных газа, числа молей которых равны N1 и N2 . Температуры и давления обоих газов одинаковы. После выдвижения перегородки происходит диффузионное смешение газов. Доказать, что в результате этого процесса энтропия газов изменяется на величину

DS = -R[N1ln[N1/(N1+N2)] + N2ln[N2/(N1+N2)].

1.12. xxxxxxx

 

1.13.Используя первый закон и определение теплоемкости, найдите разность изобарной и изохорной теплоемкостей для произвольной термодинамической системы.

1.13. В определение теплоемкости (2.6) подставим дифференциальное представление первого закона (2.1) и используем соотношение (2.13) для внутренней энергии как функции температуры и объема:

С = δQ/dT = (dU + pdV)/dT = [CVdT + (∂U/∂V)TdV + pdV]/dT =

CV + [(∂U/∂V)T + p](dV/dT).

 

1.14. Стандартные энтальпии образования жидкой и газообразной воды при 298 К равны -285.8 и -241.8 кДж/моль, соответственно. Рассчитайте энтальпию испарения воды при этой температуре.

1.14. Энтальпии образования соответствуют следующим реакциям:

H2(г) + (1/2)O2(г) = H2O(ж), DH10 = -285,8;

H2(г) + (1/2)O2(г) = H2O(г), DH20 = -241,8.

Вторую реакцию можно провести в две стадии: сначала сжечь водород с образованием жидкой воды по первой реакции, а затем испарить воду:

H2O(ж) = H2O(г), DH0исп = ?

Тогда, согласно закону Гесса,

DH10+DH0исп = DH20, откуда DH0исп =-241,8+285,8=44,0 кДж/моль.

Ответ. 44,0 кДж/моль.

1.15. Рассчитать энтальпию реакции

6C(г) + 6H(г) = C6H6(г)

а) по энтальпиям образования; б) по энергиям связи, в предположении, что двойные связи в молекуле C6H6 фиксированы.

1.15. а) Энтальпии образования (в кДж/моль) находим в справочнике (например, P.W. Atkins, Physical Chemistry, 5th edition, pp.C9-C15): DfH0(C6H6(г)) = 82,93, DfH0(C(г)) = 716,68, DfH0(H(г)) = 217,97. Энтальпия реакции равна:

DrH0 = 82,93 - 6 716,68 - 6 217,97 = -5525 кДж/моль.

б) В данной реакции химические связи не разрываются, а только образуются. В приближении фиксированных двойных связей молекула C6H6 содержит 6 связей C - H, 3 связи C - C и 3 связи C = C. Энергии связей (в кДж/моль) (P.W. Atkins, Physical Chemistry, 5th edition, p.C7): E(C - H) = 412, E(C - C) = 348, E(C = C) = 612. Энтальпия реакции равна:

DrH0 = -(6 412 + 3 348 + 3 612) = -5352 кДж/моль.

Разница с точным результатом -5525 кДж/моль обусловлена тем, что в молекуле бензола нет одинарных связей C - C и двойных связей C = C, а есть 6 ароматических связей C C.

Ответ. а) -5525 кДж/моль; б) -5352 кДж/моль.

.

1.16. Какой физический смысл следующих понятий: термодинамическое равновесие, равновесное состояние, термодинамический процесс, квазистатический процесс?

1.16. Хххххххх

Термодинамический процесс связан с изменением хотя бы одной термодинамической переменной. Процессы, протекающие самопроизвольно, называются положительными. Они приближают систему к состоянию равновесия, идут без затраты работы, и даже более того, с их помощью можно получить работу. Процессы, обратные положительным, называются отрицательными. Они могут идти только при затрате энергии извне или при сопряжении с положительными процессами внутри системы. В результате этих процессов система удаляется от равновесного состояния.

 

1.17. Как определяется температура в термодинамике и в молекулярно- кинетической теории.

Хххххххх

 

1.18. Сформулируйте нулевой закон термодинамики.

1.18. Постулат существования состояния термодинамического равновесия (первое исходное положение термодинамики):

- вне зависимости от начального состояния изолированной системы, в конце концов, в ней при фиксированных внешних условиях установится термодинамическое равновесие, в котором её макроскопические параметры остаются неизменными с течением времени и из которого система не может выйти самопроизвольно.

- второе исходное положение, или нулевой закон термодинамики (постулат о существовании температуры) описывает свойства систем, находящихся в состоянии теплового равновесия:

- если система А находится в тепловом равновесии с системой В, а та, в свою очередь, находится в равновесии с системой С, то системы А и С также находятся в тепловом равновесии.

 

1.19. Что называют уравнением состояния. Как записать это уравнение для идеального газа:

1.19.Уравнение состояния термодинамической системы. Из нулевого закона следует, что при равновесии внутренние параметры системы являются функциями внешних параметров и температуры. Уравнение, связывающее внутренние параметры с внешними параметрами и с температурой, называют уравнением состояния термодинамической системы. В общем случае уравнение состояния имеет вид:

f(a,b,T) = 0 или a = f(b,T),

где a - совокупность внутренних параметров, b - совокупность внешних параметров, T - температура.

Так же, как и начала, уравнения состояния не выводятся методами классической термодинамики, они берутся из опыта или из статистической физики. В отличие от начал термодинамики, уравнения состояния не носят всеобъемлющего характера, а применимы только для конкретных термодинамических систем.

Уравнение для идеального газа: pV = (m/M)RT.

 

1.20. Уравнение адиабаты. Показать, что кривая адиабаты p(V) круче кривой изотермы p(V).

1.20. Ххххххх

 

1.21. Формула Майера:. cp – cV для идеального газа.

1.21. Из уравнения δq/dT = dU/dT + δA/dT, (2.1)

следует, что для условий V = const справедливо следующее:

(δq/dT)V = dU/dT + pdV/dT = cV. (2.3)

Для изобарических условий ведения процесса (р = const):

cp = (δq/dT)p = dU/dT + d(pV)/dT = d(U + pV)/dT = dH/dT. (2.5)

Сравним cV и cР:

cp – cV = dH/dT – dU/dT = dU/dT + pdV/dT – dU/dT = pdV/dT. (2.6)

Из уравнения состояния идеального газа: V = RT/p. (2.7)

Тогда (2.6) с учетом (2.7) запишется в виде (2.8):

cp – cV = pdV/dT = pd(RT/p)dT = R.

 

1.22.cp – cV для твердого тела. TVoa2/k a=V-1(¶V/¶T)p – изобарический коэффициент линейного расширения, k = -V-1(¶V/¶p)T – изотермический коэффициент сжатия, Vo - молярный объем вещества при 0 К.

1.22. cp – cV = dH/dT – dU/dT = dU/dT + pdV/dT – dU/dT = pdV/dT.

(¶U/¶T)V = CV, (¶U/¶V)T = T(¶p/¶T)V – p).

Используя определение Cp = T(¶S/¶T)p в выражении dS = CVdT/T + (¶p/¶T)VdV и выражение для dV = (¶V/¶T)pdT + (¶V/¶p)Tdp = (¶V/¶T)pdT (p=const),

имеем ((¶p/¶T)V(¶T/¶V)p(¶V/¶p)T = -1 или pbk/a = 1)

cp – cV = T(¶p/¶T)V(¶V/¶T)p = pVTab = p2VTb2k = - T(¶p/¶T)V2(¶V/¶p)T ≥ 0.

 

СР - СV для твердых тел. В общем случае имеем:

dQ = dU + pdV = cVdT + [(∂U/∂V)T + p]dV.

При p = const

Cp = (dQ/dT)p = CV + [(∂U/∂V)T + p](∂V/∂T)p.

Используя равенство [(∂U/∂V)T + p] = T(∂p/∂T)V получим:

Cp – CV = T(∂p/∂T)V(∂V/∂T)p.

Cp – CV = TVa2K = TVoa2/b,

где a - изобарический коэффициент объемного расширения a = (1/Vo)(¶V/¶T)p, K = -V(∂p/∂V)T = (1/a)(∂p/∂T)V - изотермический модуль всестороннего сжатия, b - коэффициент изотермической сжимаемости b = -(1/Vo)(¶V/¶p)T, Vo - молярный объем вещества при 0 К.

 

1.23. dS = (dU + SiAidai)/T = (1/T)(¶U/¶T)ai dT + (1/T)Si[(¶U/¶ai)ai, T + Ai]dai . Тогда

(¶S/¶T)ai = (1/T)(¶U/¶T)ai, (¶S/¶ai)ai,T = (1/T)[(¶U/¶ai)ai, T + Ai]dai,

i = 1, 2, 3, …, n,

откуда, подобно 3.19, получаем следующие дифференциальное уравнение, связывающее термическое и калорическое уравнения состояния:

T (¶Ai/¶T)ai = (¶U/¶ai)T + Ai 3.26

Для простой системы, подвергнувшейся действию силы всестороннего давления A = p, a = V , уравнение 3.26 имеет вид

T(¶p/¶T)V = (¶U/¶V)T + p. 3.27

Первое начало для разности теплоемкостей Cp – CV дает выражение (2.7) : Cp – CV = [(¶U/¶V)T + p](¶V/¶T)p. Для вычисления Cp – CV по формуле 2.7 необходимо знать как термическое уравнение состояния p(T,V) , так и калорическое уравнение состояния U(T,V). Второе начало, устанавливая связь между этими уравнениями, позволяет найти Cp – CV , зная только одно термическое уравнение состояния. Действительно используя (3.27), находим:

Cp – CV = T(¶p/¶T)V(¶V/¶T)p.

Входящие сюда производные можно определить, зная лишь термическое уравнение состояния p =p(T,V) или измеряя непосредственно коэффициент объемного расширения a = (1/Vo)(¶V/¶T)p и коэффициент термического сжатия b = -(1/Vo)(¶V/¶p)T.

Из тождества (см. задачу 1.7) (¶V/¶T)p(¶T/¶p)V(¶p/¶V)T = -1 и выражений для a и b находим:

(¶p/¶T)V = -(¶V/¶T)p(¶p/¶V)T = a/b.

Подставим эту производную в формулу 3.33

Cp – CV = VoTa2/b. 3.34

Так как, согласно условию устойчивости равновесного состояния всегда (¶V/¶p)T < 0 и, следовательно, b > 0, то из уравнения 3.34 находим, что Cp ≥ CV. Равенство выполняется при a = 0. Например, у воды при 4оС и нормальном атмосферном давлении, когда ее плотность максимальна и a изменяет знак:

a < 0 при 0 < t < 4oC

a > 0 при t > 4oC.

Такое поведение коэффициентов объемного расширения у воды приводит к такому ее аномальному свойству, что в интервале температур 0 < t < 4оC при адиабатной сжатии она не нагревается, как другие жидкости и все газы, а охлаждается.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.