Сделай Сам Свою Работу на 5

К настоящему времени разработаны различные приборы для измерения скорости жидкости и газа, в которых использованы иные физические принципы: термоанемометры, доплеровские измерители.





Принцип действия термоанемометра основан на зависимости между количеством тепла, отдаваемым каким-либо нагретым телом, и скоростью потока жидкости или газа, в котором это тело находится.

Первичный преобразователь (термонить) 1 устанавливается в специальном патроне 3, который помещается в нужную точку потока (рис. 5.15). При изменении скорости потока из-за конвективного теплообмена изменятся сопротивление нити и, соответственно, электрический ток, проходящий через эту нить. Для учета изменения температуры потока служит термопара 2. Информация с термонити 1 и термопары 2 в виде электрических сигналов поступает в устройство сбора данных 4, а затем в компьютер 5, где с помощью специальной программы производится обработка данных и на экран монитора выводится информация о скорости потока жидкости или газа. Приемник термоанемометра (термонить) обычно выполняется из платиновой проволоки диаметром 0,005—0,3 мм и длиной 3-10 мм. Температура термонити должна быть по возможности высокой, так как при этом повышается чувствительность первичного преобразователя, а также и уменьшается влияние колебаний температуры потока. Поэтому температура нагрева нити обычно лежит в интервале 400…500 0С.



Принцип действия доплеровского измерителя основан на использовании эффекта Доплера, согласно которому, частота принятого сигнала, отражённого от движущегося объекта отличается от частоты излучённого сигнала, а разница частот зависит от соотношения скоростей излучателя и данного объекта. В доплеровских измерителях используют следующие виды излучения: радиоволны, свет, ультразвук. Для измерения скорости жидкости в качестве излучателей, как правило, используют лазеры.

Первыми устройствами для измерения расхода жидкости и газа были сужения, встраиваемые в трубопровод. На рис. 5.16 приведены схемы водомера Вентури. рассмотрим его принцип действия, для чего составим уравнение Бернулли для сечений 1-1 и 2-2 с учетом того, что z1= z2:

 

(5.45)

 

где hм – потеря напора в местном сопротивлении между сечениями 1-1 и 2-2.

Учитывая, что

 

а

 

определим из уравнения (5.45) u2:

(5.46)

 

Величина

 

 

называется постоянной водомера Вентури. Тогда



 

(5.47)

 

Зная u2 достаточно просто можно определить расход:

 

 

(5.48)

Таким образом, водомер Вентури позволяет определить, как расход, так и среднюю скорость жидкости. Если в сечениях 1-1 и 2-2 установить датчики давления и собрать устройство, приведенное на рис. 5.8, то можно автоматизировать сбор информации и учет расхода жидкости и газа.

Принцип действия диафрагмы (рис. 5.17) такой же, как и водомера Вентури, поэтому полученные уравнения (5.47) и (5.48) справедливы и для диафрагмы. При этом численное значение постоянной диафрагмы сд будет отличным от свн.

Ультразвуковые расходомеры. Ультразвуковой расходомер содержит излучатель 2 и два приемника 3 и 4 ультразвуковых сигналов, которые устанавливаются на трубопровод 1 (рис. 5.18). Принцип действия основан на том, звуковой импульс от излучателя 2, идущий к приемнику 4, имеет меньшую скорость, чем импульс, идущий к приемнику 3, что связано Первый принятый импульс имеет общую скорость распространения равную скорости звука минус соответствующая составляющая скорости течения жидкости u, а второй импульс будет иметь большую скорость (на величину данной составляющей скорости течения). Разница во времени прохождения импульсов пропорциональна средней скорости потока и с помощью современных цифровых технологий преоразуется в показание расхода.

Электромагнитные расходомеры. Принцип действия электромагнитных расходомеров основан на использовании закона электромагнитной индукции Фарадея, согласно которому, в проводнике, движущемся в магнитном поле, будет возникать электродвижущая сила (э. д. с), пропорциональная скорости движения проводника. Роль проводника выполняет электропроводная жидкость, протекающая по трубопроводу 1 и пересекающая магнитное поле с индукцией Вэ электромагнита 2 (рис. 5.19). При этом в жидкости будет наводиться э. д. с. U, пропорциональная средней скорости ее движения и, соответственно, расходу жидкости. Выходной сигнал такого первичного преобразователя снимается двумя изолированными электродами 3 и 4, установленными в стенке трубопровода. Электромагнитные расходомеры могут измерять расход только проводящих электрический ток жидкостей и применяются там, где необходимы точные измерения и минимальное обслуживание.



Турбинные расходомеры. В таких расходомерах измеряемый поток приводит в движение осевую турбинку, скорость вращения которой пропорциональна расходу Q. Конструктивные исполнения расходомера могут быть различными. например, корпус расходомероа изготавливают из немагнитного материала, а у одной из специальных лопастей турбинки кромку выполняют из ферромагнитного материала. Снаружи на корпусе устанавливают счетчик импульсов, которые возникают при прохождении специальной лопасти возле первичного преобразователя счетчика (например, дифференциально-трансформаторный преобразователь). Частота импульсов пропорциональной расходу Q.

 

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.