Сделай Сам Свою Работу на 5

Материалы твердотельных лазеров.





Диапазон работы современных твердотельных лазеров охватывает ультрафиолетовую, видимую и ближайшую инфракрасную области спектра.

Материалы, предназначенные для изготовления лазеров, должны иметь вполне определенный набор энергетических уровней. Наиболее удобно использовать четырехуровневую квантовую систему. Индуци­рованное излучение происхо­дит при переходах в активных атомах с уровня W2 на уро­вень W1. Накачка системы энергией обеспечивает пере­ход W0®W3. Время жизни электрона на энергетическом уровне W3 должно быть ма­лым, а время жизни на уровне W2 достаточно большим. Энергетический уровень W1 должен быть, по возможнос­ти, минимальным.

Таким образом, достаточно жестко определенный набор разрешенных энергетических уровней определяет возможность применения материала для активных элементов лазеров. Важнейшими из этих требований являются:

1. Наличие интенсивных, резких линий флуоресценции с квантовым выходом, близким к единице.

2. Наличие достаточно широких полос активного поглощения в области поглощения источника накачки.

3. Отсутствие потерь на частоте рабочего перехода.



Особый интерес представляют ионные парамагнитные диэлектрики с шириной запрещенной зоны в несколько электрон-вольт, легированные ионами переходных металлов. Ионы переходных металлов являются активаторами матрицы. К матрице предъявляются следующие требования.

1. Матрица не должна иметь собственного или примесного поглощения в области лазерного излучения и поглощения в области излучения источника накачки.

2. Матрица должна обладать высокой теплопроводностью, фотохимической и механической стойкостью.

3. Структура матрицы должна допускать введение заданного активатора. То есть в случае кристаллических материалов ионные радиусы активаторов должны быть близки к ионным радиусам ионов матрицы. При необходимости должна иметься возможность компенсировать искажения решетки матрицы.

Перечисленным свойствам удовлетворяют матрицы на основе оксидов, фторидов различных элементов.

Кристаллические материалы лазеров

Рубин

Одним из важнейших материалов лазерной техники является рубин – кристалл окиси алюминия, легированный хромом. При содержании хрома в рубине около 0,03 % возникает розовый спектр, при 0,5 % - красный, а при 8 % и более – зеленый (последнее обстоятельство обычно связывают с изменением параметра решетки окиси алюминия). В лазерной технике обычно используют бледно-розовый рубин с содержанием хрома 0,05 %. Кристаллы рубина обладают высокой химической стойкостью. Рубин хорошо растворяется в бисульфите калия при температуре, превышающей 450 °С, и в буре при температуре, превышающей 800 °С. При температуре 1000 °С возможна химическая полировка рубина в буре.



Гранаты

Применение гранатов в современной квантовой электронике объясняется удачным сочетанием оптических, теплофизических и механических свойств. Наибольшее распространение получил иттрийалюминевый гранат Y3Al5O12, легированный неодимом. Кристалл иттрийалюминиевого граната оптически изотропен и имеет кубическую решетку. Элементарная ячейка содержит восемь молекул Y3Al5O12. Наиболее часто иттрийалюминевый гранат легируют неодимом в концентрации 1-3 %. Редкоземельные элементы с меньшими атомными номерами входят в решетку труднее, с большими - легче. Это обстоятельство легко объяснимо, поскольку рост порядкового номера элемента приводит к уменьшению размера его иона.

Вследствие существенного различия в ионных радиусах иттрия и неодима, при легировании происходит искажение кристаллической решетки и пояление оптической неоднородности, которая особенно заметна при неоднородном распределении неодима в кристалле. Для достижения более однородного распределения легирующего элемента в кристалле и уменьшения внутренних напряжений применяют малые скорости роста кристаллов (~1 мм/час). Кроме того, синтезированные кристаллы подвергают длительному отжигу при температуре 1500 °С.



Лазеры на основе иттрийалюминиевого граната могут работать в режиме непрерывной генерации с выходной мощностью, равной нескольким сотням ватт; в частотном режиме с частотой повторения импульсов от единиц герц до мегагерц и в режиме единичных импульсов с импульсной мощностью равной десяткам мегаватт.

К недостаткам иттрийалюминиевого граната относится низкий коэффициент вхождения ионов неодима, что затрудняет получение кристаллов больших размеров с равномерным распределением неодима. Поэтому проводится поиск других сред со структурой граната. Одним из наиболее перспективных материалов является галлиевый гранат, а также редкоземельные галлиевые гранаты.

Редкоземельные галлиевые гранаты имеют меньшую температуру плавления, а следовательно, более технологичны. Больший параметр решетки позволяет осуществлять равномерное введение неодима. Близость ионов галлия и хрома позволяет легировать их хромом. Последнее обстоятельство особенно важно, поскольку позволяет осуществлять перенастраиваемую генерацию на электронно-колебательных переходах хрома при комнатной температуре.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.