Сделай Сам Свою Работу на 5

Задачи контрольной работы





В заданиях 4.2.1 – 4.2.20 найти указанные пределы.

 

4.2.1 . 4.2.2 .
4.2.3 . 4.2.4 .
4.2.5 . 4.2.6 .
4.2.7 . 4.2.8 .
4.2.9 . 4.2.10 .
4.2.11 . 4.2.12 .
4.2.13 . 4.2.14 .
4.2.15 . 4.2.16 .
4.2.17 . 4.2.18 .
4.2.19 . 4.2.20 .

Пример 4.3.Вычислить, используя первый замечательный предел:

.

Решение.

При непосредственной подстановке получаем неопределенность:

.

В данном случае для освобождения от неопределенности будем использовать первый замечательный предел . Для этого сначала домножим числитель и знаменатель дроби под знаком предела на и воспользуемся свойствами пределов (предел произведения равен произведению пределов, если эти пределы существуют):

.

Таким образом, нам не удалось избавиться от неопределенности. Воспользуемся формулами тригонометрии и еще раз применим первый замечательный предел и свойства пределов:

.

Задачи контрольной работы

В заданиях 4.3.1 – 4.3.20 найти указанные пределы, используя первый замечательный предел.

4.3.1 . 4.3.2 .
4.3.3 . 4.3.4 .
4.3.5 . 4.3.6 .
4.3.7 . 4.3.8 .
4.3.9 . 4.3.10 .
4.3.11 . 4.3.12 .
4.3.13 . 4.3.14 .
4.3.15 . 4.3.16 .
4.3.17 . 4.3.18 .
4.3.19 . 4.3.20 .

 



Пример 4.4.Вычислить, используя второй замечательный предел:

а) ; б) ; в) .

Решение.

а) .

При непосредственной подстановке получаем неопределенность:

.

В данном случае для освобождения от неопределенности будем использовать второй замечательный предел . Для этого представим основание в виде суммы единицы и некоторой бесконечно малой величины:

.

Т.о. наш предел примет вид:

.

Введем такую новую переменную , что , или . При переменная . Показатель степени примет вид:

.

Таким образом, пользуясь свойствами пределов и правилами действия со степенями, будем иметь:

.

б) .

При непосредственной подстановке получаем неопределенность:

.

В данном случае для освобождения от неопределенности будем использовать второй замечательный предел . Для этого положим , или , , тогда показатель степени примет вид: . При , .

Выразив основание и показатель степени через , а также воспользовавшись свойствами пределов и правилами действия со степенями, получим

.

в) .

При непосредственной подстановке получаем неопределенность:



.

В данном случае для освобождения от неопределенности будем использовать второй замечательный предел . Преобразуем выражение, стоящее в скобках. Для этого представим основание в виде суммы единицы и некоторой дроби:

.

 

Задачи контрольной работы

В заданиях 4.4.1 – 4.4.20 найти указанные пределы, используя второй замечательный предел.

4.4.1 . 4.4.2 .
4.4.3 . 4.4.4 .
4.4.5 . 4.4.6 .
4.4.7 . 4.4.8 .
4.4.9 . 4.4.10 .
4.4.11 . 4.4.12 .
4.4.13 . 4.4.14 .
4.4.15 . 4.4.16 .
4.4.17 . 4.4.18
4.4.19 . 4.4.20 .

 

Производные

Программные вопросы

1. Сформулируйте определение производной.

2. Каков геометрический смысл производной?

3. Что называется касательной к кривой? Напишите уравнение касательной к графику функции y = f(x).

4. Каков механический смысл первой и второй производной?

5. Каковы правила вычисления производных от суммы, произведения, частного двух функций?

6. Сформулируйте правило вычисления производной сложной функции.

Решение типового примера

 

Пример 5.Продифференцируйте указанные функции, пользуясь правилами и формулами дифференцирования.

a) , b)

в) , г) , д) .

РЕШЕНИЕ.

а) .

Это сложная логарифмическая функция, которая дифференцируется по формуле: .

.

Окончательно получаем:

.

При решении использовали формулы дифференцирования:

, .

б) .

Данная функция представляет собой произведение сложной показательной функции и сложной степенной функции . Воспользуемся правилом дифференцирования произведения функций: , а также формулами дифференцирования показательной и степенной функции:



, .

Для того, чтобы закончить дифференцирование воспользуемся формулами дифференцирования сложной обратнотригонометрической и тригонометрической функций: , .

.

в) .

Это сложная степенная функция, которая дифференцируется по формуле: .

.

При решении использовали формулы дифференцирования:

, , .

г) .

Данная функция представляет собой частное сложной обратнотригонометрической функции и разности сложной показательной и степенной функций. Воспользуемся правилом дифференцирования частного , а также формулами дифференцирования:

, , .

.

д) .

Это показательно – степенная функция, которую можно продифференцировать, используя формулу

,

но эта формула сложна для запоминания, поэтому мы поступим иначе:

1. прологарифмируем обе части равенства и воспользуемся свойствами логарифмической функции

.

2. продифференцируем обе части равенства, считая сложной функцией

,

Или

.

3. Из полученного равенства выразим

.

 

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.