Сделай Сам Свою Работу на 5

Передача информации в организме.





 

Прежде чем заняться рассмотрением собственно передачей информации в организме, давайте поподробнее коснемся мембраны клетки. Клеточная мембрана – жидкая пленка, образованная липидами - жироподобными

 
 

веществами. Она состоит из двух слоев липидных молекул, в которые встроены молекулы белка. Нас интересуют, прежде всего, электрические характеристики мембраны, которые начал изучать еще в 1910 году немецкий физик и химик В. Нернст, тот самый Нернст, который вывел формулу диффузионного потенциала. Измерения проводились следующим образом: через суспензию клеток проводился ток разной частоты, и определяли ее удельное сопротивление. Была развита специальная теория, позволявшая отдельно определить сопротивление мембраны и ее протоплазмы. Развивая это направление, Г. Фрикке в 1925 году показал, что мембрана ведет себя в опытах, как параллельно соединенные сопротивление и. конденсатор

 

Эквивалентная схема

клеточной мембраны: А – среда, окружающая клетку, В – цитоплазма.

То есть выяснил эквивалентную схему клеточной мембраны. Первоначально, он установил эту схему для мембраны эритроцитов.



Фрикке использовал при измерениях частоты до 4,5 МГц, это значит, что ему содействовало развитее техники – появление генераторов высокой частоты. Дальнейшие исследования показали, что емкость мембраны примерно 1 мкФ/см2, а удельное сопротивление протоплазмы близко к 100 Ом*см. Напротив, удельное сопротивление мембраны у разных клеток оказалось разным: у яйцеклетки морского ежа удельное сопротивление мембраны составляет всего 100 Ом*см2, а у водоросли нителлы – 105 Ом*см2. Обратите внимание на единицы измерения: Ом*см2! В электрофизиологии удельным сопротивлением мембраны называется сопротивление 1см2 мембраны, то есть произведение l в формуле R= l/S. Итак, мы подошли к самой постановке вопроса о системе связи в организме. Когда вы читали предыдущий текст, ваш мозг принимал сигналы от глаз и посылал команды глазным мышцам. Как? Каким образом сигналы попадали от глаза к мозгу и от мозга к глазным мышцам? Через нервы. В грубом сравнении нервы могут показаться аналогом телефонной линии. Это далеко не так. Рассмотрим две причины. Во-первых: передают сигнал не нервы, а аксоны или длинные нервные отростки. Нерв – пучок аксонов с множеством вспомогательных клеток питающих аксон и “подводящих” к нему кислород. И, во-вторых, сам аксон не простой проводник. Рассмотрим пример:



Возьмем аксон кальмара и сравним его схему со схемой обыкновенного проводника.


а)

б)

Электрические схемы передачи сигналов. Схема аксона (а) состоит из продольных сопротивлений ri емкости мембраны C сопротивления мембраны rm и источник э.д.с. Em. Техническая система передачи сигналов (б) состоит из источника тока E нагрузки H и выключателя K.

 

Даже с первого взгляда видно, что схемы кардинально отличаются.

 

Под водой…

 

Каждому из нас приходилось слышать об электрических рыбax. Для меня долгое время оставалось загадкой, как сравнительно небольшой электрический угорь может выработать разность потенциалов 800 – 900 В. Как же устроены эти рыбы?

Основу вырабатывающих органов составляют столбики из плоских клеток, лежащих друг на друге как пары медь – цинк в вольтовом столбе. К одной поверхности каждой клетки подходят нервное окончание. Когда орган находится в покое, обе стороны каждой клетки имеют одинаковый потенциал и ток через орган не идет. Когда же по всем нервным волокнам проходят импульсы постсинаптическая мембрана резко повышает свою проницаемость к ионам и потенциал падает до нуля. Это приводит к возникновению тока текущего через клетку. Так появляется разряд у ската и звездочета. У рыб, более продвинутых по ступеням эволюции, как электрический угорь, нильская щука и нильский сом органы устроены несколько иначе. Мембрана с той стороны клетки, на которую действует синапс, оказалась электрически возбудимой, так что при проходе нервного импульса она не только снижает свой потенциал до нуля, а перезаряжается, что обеспечивает более высокую разность потенциалов, генерируемую клетками.



 

 

 

 

 

Заключение.

 

Опыты Луиджи Гальвани не только объяснили причину и ход «животного электричества» , но и дали пищу для размышлений другим ученым, помогли объяснить возникновения электричества в живом организме. Возможно когда ни будь появятся источники электричества из живых организмов. Человечество знает много способов получения энергии таких как использование течения реки , использования ветра , химические реакции , энергия солнца . и ни кто не удивиться появлению таково альтернативного источника энергии как живое существо, клетка. Примером могут служить некоторые животные, вырабатывающие электричество, на пример электрический скат. Запаса электроэнергии накапливающегося в его хвосте достаточно для работы 12 электрических лампочек. Я надеюсь что в скором будущем будет изобретен прибор преобразователь электроэнергии живой клетки в бытовой электроток .

Приложение.

 

Список литературы:

1. М.Б.Буркнблит Е.Г.Гаоглева. “Электричество в живых организмах”.

2. Энциклопедия для детей “Аванта +” том 2: Биология.

3. Л. Элиот, У. Уилкокс “Физика”

4. Г.Р. Иваницкий “Мир глазами биофизики”

5. Е. Кнорре “Живое в прожекторах науки”

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.