Сделай Сам Свою Работу на 5

Формула полной вероятности и формула Байеса





Если событие А может произойти только при выполнении одного из событий , которые образуют полную группу несовместных событий, то вероятность события Авычисляется по формуле

.

Эта формула называется формулой полной вероятности.

Вновь рассмотрим полную группу несовместных событий , вероятности появления которых . Событие А может произойти только вместе с каким-либо из событий , которые будем называть гипотезами. Тогда по формуле полной вероятности

Если событие А произошло, то это может изменить вероятности гипотез .

По теореме умножения вероятностей

,

откуда

.

Аналогично, для остальных гипотез

Полученная формула называется формулой Байеса (формулой Бейеса). Вероятности гипотез называются апостериорными вероятностями, тогда как - априорными вероятностями.

Пример. В магазин поступила новая продукция с трех предприятий. Процентный состав этой продукции следующий: 20% - продукция первого предприятия, 30% - продукция второго предприятия, 50% - продукция третьего предприятия; далее, 10% продукции первого предприятия высшего сорта, на втором предприятии - 5% и на третьем - 20% продукции высшего сорта. Найти вероятность того, что случайно купленная новая продукция окажется высшего сорта.



Решение. Обозначим через В событие, заключающееся в том, что будет куплена продукция высшего сорта, через обозначим события, заключающиеся в покупке продукции, принадлежащей соответственно первому, второму и третьему предприятиям.

Можно применить формулу полной вероятности, причем в наших обозначениях:

Подставляя эти значения в формулу полной вероятности, получим искомую вероятность:

 

8) Повторение испытаний. Формула Бернулли

Пусть проводится n независимых испытаний, в каждом из которых событие A может появиться с вероятностью p и не появиться с вероятностью q = 1 - p. Обычно первый из двух возможных исходов называют удачей , а второй — неудачей (разумеется, такое деление условно, и, возможно, кому-то захочется назвать два возможных исхода удачей и неудачей противоположным образом). Поставим задачу выяснить вероятность того, что за n испытаний произошло ровно k удач, неважно, в какой последовательности (естественно, что всегда ).При заданной последовательности удач и неудач вероятность равна (испытания независимы). Число различных способов, какими могут быть расположены k удач из n испытаний всего по формулам комбинаторики (см. квант 7) равно . По формуле длявероятности суммы несовместных событий для вероятности ровно k удач из n испытаний всего, получаем (формула Бернулли ): .Рассмотрим несколько предельных случаев:



1) ,2) ,3) .

Отметим, что при фиксированном n и при малых значениях k вероятность достаточно маленькая, и это обусловлено тем, что маловероятно, что нам не повезет ни разу (не будет ни одного удачного исхода). С ростом k эта вероятность будет расти, при некотором значении достигнет максимума и далее будет убывать, становясь при k близких к n снова достаточно малой. Малое значение вероятности при k, близких к n, обусловлено тем, что маловероятно, что все испытания будут удачные.Пример 20.1Кубик бросают 10 раз. Какова вероятность того, что 3 раза выпадет единица?Вероятность удачи (выпала единица) — p = 1/6, вероятность неудачи — q = 5/6. По формуле Бернулли: .

9)Случайная величина является одним из основных понятий теории вероятностей [1]. Роль случайной величины, как одного из основных понятий теории вероятностей, впервые была чётко осознана П. Л. Чебышевым, который обосновал общепринятую на сегодня точку зрения на это понятие (1867 )[2]. Понимание случайной величины как частного случая общего понятия функции, пришло значительно позднее, в первой трети 20 века. Впервые полное формализованное представление основ теории вероятностей на базе теории меры было разработано А. Н. Колмогоровым (1933) [3], после которого стало ясным, что случайная величина представляет собой измеримую функцию, определенную на вероятностном пространстве. В учебной литературе эта точка зрения впервые последовательно проведена У. Феллером (см. предисловие к [4], где изложение строится на основе понятия пространства элементарных событий и подчеркивается, что лишь в этом случае представление случайной величины становится содержательным).



Случайные величины используются для математического представления таких сторон объектов, систем и событий, количественную характеристику которых до проведения опыта по их измерению, однозначно определить принципиально невозможно. Примером таких систем могут служить микроскопические объекты, состояние которых описывается квантовой механикой. Случайными величинами описываются события передачи наследственных признаков от родительских организмов к их потомкам (см. Законы Менделя). Следует также отметить, что существует ряд задач математического анализа и теории чисел для которых участвующие в их формулировках функции целесообразно рассматривать как случайные величины, определенные на подходящих вероятностных пространствах[5].

Формальное математическое определение следующее: пусть — вероятностное пространство, тогда случайной величиной называется функция , измеримая относительно и борелевской σ-алгебры на . Вероятностное поведение отдельной (независимой от других) случайной величины полностью описывается её распределением.

Классификация[править | править вики-текст]

Случайные величины могут принимать дискретные, непрерывные и дискретно-непрерывные значения. Соответственно случайные величины классифицируют на дискретные, непрерывные и дискретно-непрерывные (смешанные).

На схеме испытаний может быть определена как отдельная случайная величина (одномерная/скалярная), так и целая система одномерных взаимосвязанных случайных величин (многомерная/векторная).

· Пример смешанной случайной величины — время ожидания при переходе через автомобильную дорогу в городе на нерегулируемом перекрёстке.

· В бесконечных схемах (дискретных или непрерывных) уже изначально элементарные исходы удобно описывать количественно. Например, номера градаций типов несчастных случаев при анализе ДТП; время безотказной работы прибора при контроле качества и т. п.

· Числовые значения, описывающие результаты опытов, могут характеризовать не обязательно отдельные элементарные исходы в схеме испытаний, но и соответствовать каким-то более сложным событиям.

С одной стороны, с одной схемой испытаний и с отдельными событиями в ней одновременно может быть связано сразу несколько числовых величин, которые требуется анализировать совместно.

· Например, координаты (абсцисса, ордината) какого-то разрыва снаряда при стрельбе по наземной цели; метрические размеры (длина, ширина и т. д.) детали при контроле качества; результаты медобследования (температура, давление, пульс и пр.) при диагностике больного; данные переписи населения (по возрасту, полу, достатку и пр.).

Поскольку значения числовых характеристик схем испытания соответствуют в схеме некоторым случайным событиям (с их определёнными вероятностями), то и сами эти значения являются случайными (с теми же вероятностями). Поэтому такие числовые характеристики и принято называть случайными величинами. При этом расклад вероятностей по значениям случайной величины называется законом распределения случайной величины.

Ряд распределния является одним из видов группировок.

Ряд распределения — представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку.

В зависимости от признака, положенного в основу образования ряда распределения различают атрибутивные и вариационные ряды распределения:

§ Атрибутивными — называют ряды распределения, построенные по качественными признакам.

§ Ряды распределения, построенные в порядке возрастания или убывания значений количественного признака называются вариационными.

Вариационный ряд распределения состоит из двух столбцов:

В первом столбце приводятся количественные значения варьирующегося признака, которые называются вариантами и обозначаются . Дискретная варианта — выражается целым числом. Интервальная варианта находится в пределах от и до. В зависимости от типа варианты можно построить дискретный или интервальный вариационный ряд.
Во втором столбце содержится количество конкретных вариант, выраженное через частоты или частости:

Частоты — это абсолютные числа, показывающие столько раз в совокупности встречается данное значение признака, которые обозначают . Сумма всех частот равна должна быть равна численности единиц всей совокупности.

Частости( ) — это частоты выраженные в процентах к итогу. Сумма всех частостей выраженных в процентах должна быть равна 100% в долях единице.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.