Сделай Сам Свою Работу на 5

Полости и резонансные контуры





Хотя описанная нами резонансная полость с виду очень не­похожа на обычный, состоящий из катушки и конденсатора резонансный контур, однако обе резонансные системы тесно между собой связаны. Обе они — члены одной семьи; это всего лишь два крайних примера электромагнитных резонаторов, и между ними можно поместить немало промежуточных стадий. Начнем, скажем, с того, что подключим конденсатор в параллель с индуктивностью и образуем резонансный контур (фиг. 23.16, а). Этот контур будет резонировать на частоту w0=ÖLC. Если мы захотим поднять частоту в этом контуре, то этого можно дос­тичь, понизив индуктивность L, например уменьшив число вит­ков в катушке. Но далеко на таком пути мы не уйдем. Мы дой­дем до последнего витка и тогда останется просто кусок провода, соединяющий верх и низ конденсатора. Можно было бы продол­жать повышать резонансную частоту, уменьшая емкость; однако можно и дальше уменьшать индуктивность, запараллеливая рядом несколько индуктивностей. Две одновитковые индук­тивности, включенные в параллель друг у друга, приведут к половине индуктивности одного витка. Так что, даже доведя катушку до одного витка, можно продолжать повышать резо­нансную частоту, добавляя отдельные петли, соединяющие верхнюю обкладку конденсатора с нижней. На фиг. 23.16, б показаны обкладки конденсатора, соединенные шестью подоб­ными «одновитковыми индуктивностями». Продолжая прибав­лять новые куски провода, мы постепенно перейдем к совершен­но замкнутой резонансной системе. Такая система (вернее, ее осевое сечение) показана на фиг. 23.16,в. Теперь индуктивность— это пустотелый цилиндр, припаянный к краям обкладок конденсатора. Электрические и магнитные поля будут иметь направление, показанное на рисунке. Такой предмет — это, в сущности, уже резонансная полость. Ее называют «нагружен­ной» полостью. Но можно ее также все еще рассматривать как L—С-контур, в котором емкостная часть — область, где находится большая часть электрического поля, а индуктивная — где помещается большая часть магнитного поля.



 


 

Фиг. 23.16. Резонаторы с возрастающей резонансной частотой.

 

Если мы захотим повысить частоту резонатора на фиг. 23.16,в сильнее, то надо еще уменьшить индуктивность L. Чтобы этого добиться, следует уменьшить геометрические размеры индук­тивной секции, скажем, уменьшить на чертеже высоту h. При уменьшении h резонансная частота растет. И в конце концов можно, конечно, дойти до такого положения, при котором высота h сравняется с промежутком между обкладками. Получится обычная цилиндрическая банка; наш резонансный контур пре­вратится в полый резонатор, показанный на фиг. 23.7.



Заметьте теперь, что в первоначальном резонансном L—С-контуре (фиг. 23.16) электрические и магнитные поля были со­вершенно разделены. Когда мы постепенно видоизменяли резо­нансную систему, все повышая ее частоту, то магнитное поле теснее и теснее сближалось с электрическим, пока в полом резонаторе окончательно не перемешалось с ним.

Хотя все полые резонаторы, о кото­рых в этой главе говорилось, были ци­линдрическими, ничего волшебного в самой цилиндрической форме нет. Банка любого вида все равно будет обладать резонансными частотами, отвечающими различным допустимым типам колеба­ний электрических и магнитных полей. К примеру, у «полости» на фиг. 23.17 будет своя личная совокупность резонансных частот, хотя их и трудно рас­считать.

 


 

 

Фиг, 23.17. Еще одна резонансная полость.


 

Глава 24

ВОЛНОВОДЫ

Передающая линия

Прямоугольный волновод

Граничная частота

Скорость волн в волноводе

Как наблюдать волны в волноводе

Сочленение волноводов

Типы волн в волноводе

§ 8. Другой способ рассмотрения волн в волноводе



Передающая линия

В предыдущей главе мы выяснили, что слу­чится с сосредоточенными элементами цепи, если на них подать очень высокую частоту. Мы пришли к выводу, что резонансный контур мож­но заменить полостью, внутри которой поля вступают друг с другом в резонанс. Но есть и другой интересный технический вопрос: как связать между собой два предмета, чтобы можно было передать электрическую энергию от одного к другому? В цепях низкой частоты эта связь осуществляется по проводам, но этот способ на высоких частотах не очень хорош, потому что энергия рассеивается во все стороны и трудно контролировать, куда она потечет. От проводов во все стороны разбегаются поля; к тому же то­ки и напряжения высокой частоты не очень хорошо «проводятся» проводами. В этой главе мы и хотим разобраться в том, как можно со­единять между собой предметы на большой частоте. Таков по крайней мере один подход к теме нашей лекции.

Но можно к ней подойти и по-другому, мож­но сказать, что мы пока обсуждали поведение волн в пустом пространстве, а теперь пришло время посмотреть, что случится, если колеблю­щиеся поля ограничить в одном или двух изме­рениях. Мы обнаружим новое интересное яв­ление: если поля ограничить в двух измерениях и дать им свободу в третьем, они распространя­ются в виде волн. «Волны в волноводе» и будут предметом нашей лекции.

Начнем с разработки общей теории линии передачи. Обычная линия электропередачи, ко­торая тянется от мачты к мачте по полям и ле­сам, тратит часть своей мощности на излучение, но частота здесь так мала (50—60 гц), что эти потери почти не­заметны.


Фиг. 24.1. Коаксиальная передающая линия.

 

От излучения можно избавиться, поместив провод в металлическую трубу, но это непрактично, потому что при та­ких токах и напряжениях в сети без больших, тяжелых и доро­гих труб не обойтись. Так что в ходу обычно «открытые линии».

На частотах чуть повыше (порядка нескольких килогерц) излучение уже вполне заметно. Но его можно уменьшить, поль­зуясь «двухжильной» линией передачи, как это делается при те­лефонной связи на малые расстояния. Однако при дальнейшем повышении частоты излучение вскоре становится нетерпимо сильным либо за счет потерь энергии, либо из-за того, что энер­гия перетекает в другие контуры, где она совсем не нужна. На частоте от нескольких килогерц до нескольких тысяч мегагерц электромагнитные сигналы и электромагнитная энергия обычно передаются по коаксиальным линиям, т. е. по проводу, помещен­ному внутрь цилиндрического «внешнего проводника», или «за­щиты». Хотя дальнейшие рассуждения годятся для линии пере­дачи из двух параллельных проводников любого сечения, речь будет идти о коаксиальном кабеле.

Возьмем простейшую коаксиальную линию, состоящую из центрального проводника (пусть это будет тонкостенный полый цилиндр) и внешнего проводника — тоже тонкостенного цилин­дра, ось которого совпадает с осью внутреннего проводника (фиг. 24.1). Для начала представим себе, как примерно ведет себя эта линия при относительно низких частотах. Мы уже кое-что говорили о поведении при низких частотах, когда утверж­дали, что у двух таких проводников на каждую единицу длины приходится сколько-то там индуктивности и сколько-то емкости. И действительно, поведение любой передающей линии при низ­ких частотах можно описать, задав ее индуктивность на едини­цу длины L0 и ее емкость на единицу длины С0. Тогда линию можно было бы рассматривать как предельный случай фильтра L—С (см. гл. 22, § 7). Можно создать такой фильтр, который будет имитировать линию, если последовательно соединить меж­ду собой маленькие элементы индуктивности L0Ax и зашунтировать их маленькими емкостями С0Dx; (где Dx; — элемент длины линии). Применяя к бесконечному фильтру наши прежние ре­зультаты, мы бы увидали, что вдоль линии должны распростра­няться электрические сигналы. Но поступим иначе и вместо этого изучим свойства линии, опираясь на дифференциальные уравнения.


 

Фие. 24.2. Токи и напряже­ния в передающей линии.

 


Предположим, мы наблюдаем за происходящим в двух сосед­них точках передающей линии, скажем, на расстояниях х и х+Dх от начала линии. Обозначим напряжение между провод­никами через V(x), а ток в верхнем проводнике I(х} (фиг. 24.2). Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+Dx

 

Или, беря предел при Dx®0, получаем


 

(24.1)

Изменение тока приводит к перепаду напряжения.


Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок ли­нии от х до x+Dx, то заряд на нем равен q = C0DxV. Скорость изменения этого заряда равна C0DxdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+Dх), Обозначая разность через DI,

 

 


Если перейти к пределу при Dx®0, получается

 

 

(24.2)

Так что сохранение заряда предполагает, что градиент тока про­порционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов че­рез изоляцию между проводниками, но пока нам достаточно са­мого простого примера.


Оба уравнения передающей линии можно объединить, про­дифференцировав первое по t, а второе по x; и исключив V или I. Получится либо

 

 

(24.3)


либо

 

(24.4)

Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать за­кону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d2/dt2 — это просто 1/v2. так что

 

 


 

(24.5)


Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффи­циент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для вол­ны, бегущей в направлении +x, вы должны будете получить

 

 

(24.6)


Равным образом, для волны, бегущей в направлении -х, полу­чится

 

Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением


 

(24.7)

и поэтому есть чистое сопротивление.

Чтобы найти скорость распространения v и характеристиче­ский импеданс z0 передающей линии, нужно знать индуктив­ность и емкость единицы длины линии. Для коаксиального ка­беля их легко подсчитать. Поглядим, как это делается. При рас­чете индуктивности мы будем следовать идеям, изложенным в гл. 17, § 8, и положим 1/2 LI2 равным магнитной энергии, в свою очередь получаемой интегрированием e0с2B2/2 по объему. Пусть по внутреннему проводнику течет ток I; тогда мы знаем, что B=I/2pe0с2r, где r — расстояние от оси. Беря в качестве эле­мента объема цилиндрический слой толщины dr и длины l,

получаем для магнитной энергии

 

 


 

 


где а и b — радиусы внутреннего и внешнего проводников, Интегрируя, получаем

 

 

(24.8)


Приравниваем эту энергию к 1I2LI2 и находим

 

 

(24.9)

Как и следовало ожидать, L пропорционально длине l линии, поэтому L0 (индуктивность на единицу длины) равна


 

(24.10)

Мы уже рассчитывали заряд на цилиндрическом конден­саторе [гл. 12, § 2 (вып. 5)]. Деля теперь этот заряд на раз­ность потенциалов, получаем


 

Емкость же на единицу длины С0это С/l. Сопоставляя этот результат с (24.10), мы убеждаемся, что произведение L0C0 равно просто 1/с2, т. е. v=1ÖL0C0 равно с. Волна бежит по линии со скоростью света. Нужно подчеркнуть, что этот результат зави­сит от сделанных предположений: а) что в промежутке между проводниками нет ни диэлектриков, ни магнитных материалов; б) что все токи текут только по поверхности проводников (как это бывает в идеальных проводниках). Позже мы увидим, что на высоких частотах все токи распределяются на поверхности хоро­ших проводников, словно они идеальные проводники, так что это предположение правильно.

Любопытно, что в этих двух предположениях произведение L0C0 равно 12 для любой параллельной пары проводников, да­же в том случае, если, скажем, внутренний шестигранный про­водник тянется как-то вдоль эллиптического внешнего. Пока сечение постоянно и между проводниками нет ничего, волны рас­пространяются со скоростью света.

Подобных общих утверждений по поводу характеристиче­ского импеданса сделать нельзя. Для коаксиальной линии он равен


 

(24.11)

Множитель 1/e0c имеет размерность сопротивления и равен 120p ом. Геометрический фактор In(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинст­во других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.

Прямоугольный волновод

То, о чем мы сейчас будем говорить, на первый взгляд ка­жется поразительным явлением: если из коаксиального кабеля убрать внутреннюю жилу, он все равно будет проводить элект­ромагнитную энергию. Иными словами, на достаточно высокой частоте полая труба действует ничуть не хуже, чем труба, внут­ри которой имеется провод. Связано это с другим таинственным явлением, о котором мы уже знаем,— на высоких частотах ре­зонансный контур (конденсатор с катушкой) можно заменить простой банкой.

Это выглядит очень странно, если пользоваться представле­нием о передающей линии, как о распределенных индуктивности и емкости. Но ведь все мы знаем, что внутри пустой металличе­ской трубы могут распространяться электромагнитные волны. Если труба прямая, через нее все видно! Значит, электромаг­нитные волны через трубу бесспорно проходят. Но мы знаем также, что нет возможности передавать волны низкой частоты (переменный ток или телефонные сигналы) через одну-единственную металлическую трубу. Выходит, электромагнитные вол­ны проходят через нее только тогда, когда их длина волны дос­таточно мала. Поэтому мы рассмотрим предельный случай самых длинных волн (или самых низких частот), способных про­ходить через трубу данного размера. Эту трубу, служащую для прохождения волн, называют волноводом.

Начнем с прямоугольной трубы, ее проще всего анализи­ровать. Сперва изложим все математически, а потом еще раз вернемся назад и рассмотрим вопрос более элементарно. Но этот более элементарный подход легко применить лишь к прямо­угольным трубам. Основные же явления в любой трубе одни и те же, так что математические доводы звучат более основа­тельно.

Поставим перед собой следующий вопрос: какого типа волны могут существовать в прямоугольной трубе? Выберем сначала удобные оси координат: ось z направим вдоль трубы, а оси х и у — вдоль стенок (фиг. 24.3).

Известно, что когда волны света бегут по трубе, их электри­ческое поле поперечно; поэтому начнем с поиска таких решений, в которых Е перпендикулярно z, скажем решений с одной толь­ко y-компонентой Еy (фиг. 24.4,а). Это электрическое поле должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.

 

 


 

Фиг, 24.3. Выбор осей коорди­нат для прямоугольного волно­вода.

 

Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической сим­метрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.

Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между по­ложительными и отрицательными значениями (фиг. 24.5) и что должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.


 

Фиг. 24.4. Электрическое поле в волноводе при некотором зна­чении z.

 


 

 

Фиг. 24.3. Выбор осей коорди­нат для прямоугольного волно­вода.

 

Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической сим­метрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.

Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между по­ложительными и отрицательными значениями (фиг. 24.5) и что


Фиг. 24,4. Электрическое поле в волноводе при некотором зна­чении z.

 


 

Фиг. 24.5. Зависимость поля в волноводе от z.

 

эти колебания будут бежать вдоль трубы с какой-то скоростью v. Если имеются колебания с определенной частотой w, то надо испытать, может ли волна меняться по z как cos(wt—kzz) или, в более удобной математической форме, как еi(wt-k2z). Такая зависимость от z представляет волну, бегущую со скоростью v=w/kz [см. гл. 29 (вып. 3)].


Значит, можно допустить, что волна в трубе имеет следую­щую математическую форму:

 

(24.12)


Давайте-ка поглядим, можно ли при таком допущении удов­летворить правильным уравнениям поля. Во-первых, электри­ческое поле не должно иметь составляющих, касательных к про­воднику. Для этого наше поле подходит; вверху и внизу оно на­правлено поперек стенок, а с боков равно нулю. Впрочем, для последнего необходимо, чтобы полволны sin kxx как раз укла­дывалось на всей ширине волновода, т. е. чтобы было

 

 

(24.13)

Это условие определяет kx. Есть и иные возможности, например kxa=2p, Зp, ... или в общем случае


 

(24.14)

где n — целое. Все они представляют различные сложные рас­положения полей, но мы дальше будем говорить о самом прос­том, когда kx=p/a, a a — внутренняя ширина трубы.

Далее, дивергенция Е в пустом пространстве внутри трубы должна быть равна нулю, потому что в трубе нет зарядов. У нашего Е есть только y-компонента, но по у она не меняется, так что действительно V•Е=0.


Наконец, наше электрическое поле должно согласовываться с остальными уравнениями Максвелла для пустого пространст­ва внутри трубы. Это все равно, что потребовать, чтобы оно удовлетворяло волновому уравнению

 

(24.15)

Нам надо проверить, подойдет ли сюда выбранная нами форма (24.12). Вторая производная Еy по х просто равна —k2хЕу. Вторая производная по у равна нулю, потому что от у ничего не зависит. Вторая производная по z есть —k2zEy, а вторая про­изводная по t это —w2Еy . Тогда уравнение (24.15) утверждает, что


 

 


Если Еy не обращается всюду в нуль (этот случай нас не очень интересует), то это уравнение выполняется всегда, если

 

 

(24.16)


Число kx мы уже закрепили, так что это уравнение говорит нам, что волны предположенного нами типа возможны лишь тогда, когда kz связано с частотой w условием (24.16), т. е. когда

 

(24.17)

Волны, которые мы описали, распространяются в направлении z с таким значением kz.

Волновое число kz, которое мы получили из (24.17), дает нам при данной частоте w скорость, с которой бегут вдоль трубы узлы волны. Фазовая скорость равна

 

 


 

(24.18)


Вспомните теперь, что длина l, бегущей волны дается форму­лой l=2pv/w, так что kzтакже равняется 2p/lg, где lgдлина волны осцилляции в направлении z — «длина волны в волново­де». Длина волны в волноводе, конечно, отличается от длины электромагнитных волн той же частоты, но в пустом простран­стве. Если длину волны в пустом пространстве обозначить l0 (что равно 2pс/w), то (24.17) можно переписать в таком виде:

 

(24.19)


Фиг. 24.6. Магнитное по­ле в волноводе.

Кроме электриче­ских полей, существуют и магнитные поля, кото­рые тоже движутся вол­нообразно. Мы не будем сейчас заниматься выво­дом выражений для них. Ведь c2ÑXВ = dE/dt, и линии В циркулируют вокруг областей, где dE/dt — наибольшее, т. е. на полпути между максимумом и миниму­мом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).

Граничная частота

Уравнение (24.16) для kz на самом деле имеет два корня — один с плюсом, другой с минусом. Ответ следует писать так:


 

 

(24.20)

Смысл этих двух знаков просто в том, что волны в волноводе мо­гут бежать и с отрицательной фазовой скоростью (в направлении —z), и с положительной. Волны, естественно, должны иметь возможность бежать в любую сторону. И раз одновременно мо­гут существовать оба типа волн, то решение в виде стоячих волн тоже возможно.

Наше уравнение для kz сообщает нам также, что высшие час­тоты приводят к большим значениям kg, т. е. к более коротким волнам, пока в пределе больших w величина k не станет равной w/с — тому значению, которое бывает, когда волна бежит в пусто­те. Свет, который мы «видим» сквозь трубу, все еще бежит со ско­ростью с. Но посмотрите зато, какая странная вещь получается, когда частота убывает. Сперва волны становятся все длиннее и длиннее. Но если частота w станет чересчур малой, то под кор­нем в (24.20) внезапно появится отрицательное число. Это произойдет, когда w перевалит через pс/а или когда l0 станет боль­ше 2а. Иначе говоря, когда частота становится меньше некото­рой критической частоты wc=pс/а, волновое число kz (а также lg) становится мнимым и никакого решения у нас не остается. Или остается? Кто, собственно, сказал, что kz должно быть действи­тельным? Что случится, если оно станет мнимым? Уравнения-то поля по-прежнему ведь будут удовлетворяться. Может быть, и мнимые kz тоже представляют какую-то волну?


Предположим, что w действительно меньше wc; тогда можно написать

 

 

(24.21)

где k' — действительное положительное число


 

 

(24.22)


Если теперь вернуться к нашей формуле (24.12) для Еy , то надо будет написать

 

 

(24.23)


что можно также представить в виде

 

(24.24)

Это выражение приводит к полю Е, которое во времени колеб­лется как eiwt, a no z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.

Итак, при частотах ниже wсpс/а волны вдоль трубы не рас­пространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту wс назы­вают «граничной частотой» волновода. Глядя на (24.22), мы ви­дим, что для частот чуть пониже wc число k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше wс, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоя­нии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.

Мы хотим еще раз подчеркнуть эту характерную черту на­шего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы полу­чаем мнимое число, то это обычно ничего физического не озна­чает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетво­ряется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн


 

 

Фиг. 24.7. Изменение Еy с ро­стом z при w<<wc.

 

Итак, если в любой задаче на волны k при какой-то частоте ста­новится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.