Сделай Сам Свою Работу на 5

Сети идеальных элементов; правила Кирхгофа

S 4. Эквивалентные контуры

Энергия

Лестничная сеть

Фильтры

Другие элементы цепи

Повторить: гл.2 (вып. 2) «Алгебра»; гл. 23 (вып. 2) «Резонанс»;

Гл. 25 (вып. 2) «Линейные системы и обзор»

Импедансы

В основном наши усилия при чтении этих лекций были направлены на то, чтобы по­лучить полные уравнения Максвелла. В преды­дущих двух главах мы обсудили следствия этих уравнений. Выяснилось, что они содержат объяснение всех статических явлений, которые мы изучали раньше, и явлений электромагнит­ных волн и света — вопроса, подробно изучав­шегося в самом начале нашего курса. Урав­нения Максвелла дают и то и другое, смотря по тому, где эти поля вычисляются: побли­зости от токов и зарядов или же вдали от них. Есть и промежуточная область, но о ней ничего интересного сказать нельзя; там никаких осо­бых явлений не происходит.

Но в электромагнетизме остается еще не­сколько вопросов, которые стоит осветить. Надо будет обсудить вопрос связи относитель­ности и уравнений Максвелла, т. е. выяснить, что произойдет, если на уравнения Максвелла посмотреть из движущейся системы координат. Важен еще и вопрос о сохранении энергии в электромагнитных системах. Кроме того, существует обширная область электромагнит­ных свойств материалов; до сих пор мы рас­сматривали только электромагнитные поля в пустом пространстве, если не считать изучения свойств диэлектриков. Да и при изучении света все еще оставалось несколько вопросов, которые хотелось бы рассмотреть еще раз с точки зре­ния уравнений поля.

В частности, надо бы еще раз вернуться к вопросу о показателе преломления (особенно у плотных веществ). Наконец, интересны яв­ления, связанные с волнами, заключенными внутри ограниченной области пространства. Мы кратко косну­лись этой проблемы, когда изучали звуковые волны. Но урав­нения Максвелла тоже приводят к решениям, которые пред­ставляют волны электрических и магнитных полей, замкнутые в некотором объеме. В одной из последующих глав мы рас­смотрим этот вопрос, имеющий важные технические примене­ния. И чтобы подойти к нему, мы начнем с того, что изложим свойства электрических цепей при низких частотах. После этого мы сможем сравнить такие системы, когда к уравнениям Максвелла применимо почти статическое приближение, и системы, в которых преобладают высокочастотные эффекты.

Итак, снизойдем с величественных и труднодоступных высот последних нескольких глав и обратим свой взор на сравнительно низменную задачу — задачу об электрических цепях. Впрочем, мы убедимся в том, что даже столь мирские дела оказываются весьма запутанными, если в них вникнуть достаточно глубоко.

В гл. 23 и 25 (вып. 2) мы уже обсуждали некоторые свойства электрических цепей (контуров). Теперь мы повторим часть из­ложенного там материала, но более подробно. Мы по-прежнему будем иметь дело с линейными системами и с напряжениями и токами, которые меняются синусоидально; поэтому мы можем представить все напряжения и токи в виде комплексных чисел, пользуясь экспоненциальными обозначениями, введенными в гл. 22 (вып. 2). Так, меняющееся во времени напряжение V(t) будет записываться в виде


 

(22.1)

 

 

где комплексное число, не зависящее от t. При этом, ко­нечно, подразумевается, что настоящее переменное по времени напряжение V(t) представляется действительной частью комп­лексной функции в правой части уравнения.


Подобным же образом и все другие меняющиеся во времени величины будут считаться изменяющимися синусоидально с той же частотой w. Мы будем писать

 

 

(22.2)

и т. д.

Большей частью мы будем писать уравнения, пользуясь обозначениями V, I, e, ...

(вместо ...), помня при этом, что они изменяются со временем всегда так, как в (22.2).

В прежних наших рассуждениях об электрических цепях мы полагали, что такие вещи, как индуктивность, емкость и со­противление, вам знакомы. Сейчас мы немного подробнее объясним, что понимают под этими идеализированными эле­ментами схем. Начнем с индуктивности.

 


 

Фиг. 22.1. Индуктивность.

Индуктивность — это навитая в несколько рядов проволока в форме катушки, два конца которой выведены к зажимам на некотором расстоянии от катушки (фиг. 22.1). Предположим, что магнитное поле, создаваемое токами в катушке, не очень рас­пространяется на все пространство и не воздействует на другие части цепи. Обычно этого добиваются, придав катушке форму лепешки или намотав ее на подходящий железный сердечник (это сжимает магнитное поле); можно еще поместить катушку внутрь металлической коробочки: схематически это показано на фиг. 22.1. В любом случае предполагается, что во внешней области у зажимов а и b магнитным полем можно пренебречь. Кроме того, мы будем считать, что электрическое сопротивление проводов в катушке можно не учитывать. И наконец, полагают, что можно пренебречь и электрическим зарядом, возникающим на поверхности провода, когда создаются электрические поля.


С учетом всех этих приближений и возникает то, что назы­вают «идеальной» индуктивностью. (Позже мы вернемся к этому пункту и поговорим о том, что бывает в реальных индуктивностях.) Про идеальную индуктивность говорят, что напряжение на ее зажимах равно L(dl/dt). Почему? Когда через индуктив­ность идет ток, то внутри катушки создается магнитное поле, пропорциональное силе тока. Если ток во времени меняется, то меняется и магнитное поле. Вообще говоря, ротор Е равен —dB/dt; можно сказать и по-другому: контурный интеграл от Е по любому замкнутому пути равен (с минусом) быстроте изме­нения потока В через контур. Представьте теперь себе следую­щий путь: начинается он на зажиме а и тянется вдоль катушки (оставаясь все время внутри провода) к зажиму b; затем воз­вращается от зажима b к а по воздуху в пространстве вне ка­тушки. Контурный интеграл от Е по этому замкнутому пути можно записать в виде суммы двух частей:

 

(22.3)


Как мы уже выяснили раньше, внутри идеального проводника электрических полей существовать не может. (Малейшие поля вызвали бы бесконечно большие токи.) Поэтому интеграл от зажима а до bчерез катушку равен нулю. Весь вклад в кон­турный интеграл от Е приходится на путь снаружи индуктив­ности, от зажима bк зажиму а. А так как было предположено, что в пространстве вне «коробки» нет никаких магнитных полей, то эта часть интеграла не зависит от выбора пути. Значит, можно определить понятие потенциала обоих зажимов. Разность этих двух потенциалов и есть то, что называют напряжением V, так что

 


Полный интеграл по контуру — это то, что мы раньше назы­вали э. д. с. e. Он, естественно, равен скорости изменения магнитного поля в катушке. Мы уже знаем, что эта э. д. с. равна (со знаком минус) быстроте изменения тока, так что

 

где Lиндуктивность катушки. Поскольку dI/dt=iwI, то мы имеем


 

 

(22.4)

Тот способ, которым мы описали идеальную индуктивность, иллюстрирует общий подход к другим идеальным элементам цепи — обычно их называют «сосредоточенными» элементами. Свойства элемента полностью описываются на языке токов и напряжений, возникающих на его зажимах. Прибегнув к под­ходящим приближениям, можно игнорировать огромную слож­ность тех полей, которые возникают внутри объекта. То, что происходит внутри, отделяется от того, что происходит сна­ружи.

Для всех элементов цепи мы намерены сейчас найти соот­ношения, подобные формуле (22.4). В ней напряжение пропор­ционально силе тока с константой пропорциональности, кото­рая, вообще говоря, есть комплексное число. Этот комплексный коэффициент пропорциональности называется импедансом, и его привыкли обозначать через z (не следует путать с координатой z). В общем случае это функция частоты w. Стало быть, для каж­дого сосредоточенного элемента мы напишем

 

 


(22.5)


Для индуктивности мы имеем

 

 


(22.6)

 

Фиг. 22.2. Емкость (или конденсатор).

Рассмотрим с этой точки зрения емкость . Она состоит из двух проводящих пластин (обкладок), от которых к нужным за­жимам отходят два провода. Пластины могут быть любой формы и часто отделяются друг от друга каким-нибудь диэлектриком. Это схематически изображено на фиг. 22.2. Мы снова делаем несколько упрощающих предположений. Мы считаем, что пла­стины и провода — идеальные проводники, а изоляция между пластинами тоже идеальна, так что через нее никакие заряды с пластины на пластину перейти не могут. Затем мы предпола­гаем, что проводники находятся близко друг от друга, но зато аначительно удалены ото всех остальных проводников, так что все линии поля, выйдя из одной пластины, непременно окан­чиваются на другой. И тогда заряды на пластинах всегда равны и противоположны друг другу, причем по величине намного превосходят величину заряда на поверхности проводов. И на­конец, мы считаем, что поблизости от конденсатора магнитных полей нет.

Рассмотрим теперь контурный интеграл от Е вдоль замкну­той петли, которая начинается на клемме а, проходит внутри провода до верхней обкладки конденсатора, перескакивает про­межуток между пластинами, проходит с нижней обкладки на клемму b и возвращается к клемме а по пространству снаружи конденсатора. Раз магнитного поля нет, контурный интеграл от Е по этому замкнутому пути равен нулю. Интеграл можно раз­бить на три части:


 

Интеграл вдоль проводов равен нулю, потому что внутри идеаль­ных проводников электрического поля не бывает. Интеграл от зажима b до а снаружи конденсатора равен разности потенциалов между клеммами со знаком минус. А поскольку мы считаем, что обкладки как-то изолированы от прочего мира, то общий заряд двух обкладок должен быть равен нулю; и если на верх­ней обкладке есть заряд Q, то на нижней имеется заряд —Q. Раньше мы уже видели, что если заряды двух проводников рав­ны и противоположны, +Q и -Q, то разность потенциалов между ними есть Q/C, где С — емкость этих проводников. Из (22.7) следует, что разность потенциалов между зажимами а и b равна разности потенциалов между обкладками. Поэтому


Электрический ток I, втекающий в конденсатор через клемму а (и покидающий его через клемму b), равен dQ/dt — быстроте изменения электрического заряда на обкладках. Записывая dV/dt в виде iwV, можно связь между током и напряжением для конденсатора дать в следующем виде:


 

или

 


 

(22.8)

Тогда импеданс z конденсатора равен

 

 


 

(22.9)


Третий элемент, который нужно рассмотреть,— это сопро­тивление. Но, поскольку мы пока еще не рассматривали элек­трических свойств реальных веществ, мы не готовы обсуждать то, что творится внутри реального проводника. Придется просто принять как факт, что внутри реальных веществ могут суще­ствовать электрические ноля, что эти поля порождают поток электрического заряда (т. е. ток) и что этот ток пропорционален интегралу электрического поля от одного конца проводника до другого. Затем надо представить себе идеальное сопротивление, сделанное так, как показано на фиг. 22.3. Два провода, которые мы считаем идеальными проводниками, тянутся от клемм а и b к двум концам бруска, сделанного из материала, оказываю­щего сопротивление току. Следуя нашей обычной линии рас­суждений, приходим к выводу, что разность потенциалов между зажимами а и b равна контурному интегралу от внешнего элек­трического поля, равному также контурному интегралу от электрического поля по пути, проходящему через брусок.

 

 

Фиг. 22.3. Сопротивление.

От­сюда следует, что ток I через сопротивление пропорционален напряжению V на зажимах:


где R называется сопротивлением. Позже мы убедимся, что связь между силой тока / и напряжением V для реальных про­водящих материалов только приближенно можно считать ли­нейной. Мы убедимся также, что считать эту приближенную пропорциональность не зависящей от частоты изменений тока и напряжения можно лишь тогда, когда частота не слишком высо­ка. И тогда для переменных токов напряжение на зажимах ока­зывается в фазе с током, а это значит, что сопротивление — число действительное:


(22.10)

Результаты наших рассуждений о трех сосредоточенных эле­ментах цепи — индуктивности, емкости, сопротивлении — по­дытожены фиг. 22.4. На этом рисунке, как и на предыдущих, напряжение отмечено стрелкой, направленной от одной клеммы к другой. Если напряжение «положительно», т. е. если на клемме а потенциал выше, чем на клемме b, то стрелка указы­вает направление «падения напряжения».


Хотя мы сейчас говорим о переменных токах, конечно, можно включить сюда и особый случай цепей постоянного тока, если перейти к пределу, когда частота w стремится к нулю.

 

 

Фиг. 22.4. Идеальные сосредо­точенные элементы цепи (пассив­ные).

При нуле­вой частоте, т. е. при постоянном токе, импеданс индуктивности стремится к нулю; между клеммами наступает короткое замыка­ние. Импеданс же емкости при постоянном токе стремится к бес­конечности; цепь между клеммами размыкается. Принимать в расчет при постоянных токах нужно только обычные сопротив­ления: они не зависят от частоты.

В описанных до сих пор элементах цепи ток и напряжение были пропорциональны друг другу. Если одно равно нулю, то и другое равно нулю. Обычно мы мыслим на таком языке: при­ложенное напряжение «ответственно» за ток или ток «создает» напряжение на клеммах. Элемент словно в некотором смысле «отвечает» на «приложенные» внешние условия. По этой причи­не такие элементы называются пассивными. Тем самым их можно противопоставить активным элементам, таким, как генераторы, которые мы рассмотрим в следующем параграфе и которые пред­ставляют собой источники колебаний токов или напряжений в цепи.

Генераторы

Поговорим теперь об активном элементе цепи, источнике и токов и напряжений в ней, т. е. о генераторе.

Пусть у нас имеется катушка, наподобие катушки самоин­дукции, но только витков у нее немного и на магнитное поле ее собственного тока можно внимания не обращать. Эта катуш­ка, однако, находится в переменном магнитном поле, подобном тому, какое создается вращающимся магнитом (фиг. 22.5). (Мы уже видели ранее, что такое вращающееся магнитное поле мож­но также создать с помощью подходящей совокупности катушек с переменными токами.) Сделаем снова несколько упрощающих допущений. Это все те же допущения, которые мы делали, гово­ря об индуктивности. В частности, мы предполагаем, что меняю­щееся магнитное поле ограничено лишь небольшой областью поблизости от катушки и за пределами генератора, в простран­стве
между клеммами, оно не чувствуется.

 

 


Фиг. 22.5. Генератор, состоя­щий из закрепленной катушки и вращающегося магнитного поля.

 

Фиг. 22.6. Обозначение идеального генератора.

Повторяя опять в точности тот же анализ, что и для индук­тивности, рассмотрим контурный интеграл от Е вдоль замкну­той петли, которая начинается на зажиме а, проходит по ка­тушке до зажима bи возвращается к началу по пространству между зажимами. Снова заключаем, что разность потенциалов между зажимами а и bравна всему интегралу от Е вдоль петли:

 

 



Этот контурный интеграл равен э.д.с. в цепи, и поэтому разность потенциалов V между выводами генератора тоже равна скорости изменения магнитного потока сквозь катушку:

 

 

(22.11)

Предполагается далее, что у идеального генератора магнитный поток через катушку определяется внешними условиями (таки­ми, как угловая скорость вращающегося магнитного поля) и что на него никак не влияют токи, текущие через генератор. Таким образом, генератор (по крайней мере рассматриваемый нами идеальный) — это не импеданс. Разность потенциалов на его зажимах определяется произвольно задаваемой э.д.с. e(t). Такой идеальный генератор представляют символом, по­казанным на фиг. 22.6. Маленькая стрелка дает направление по­ложительной э.д.с. Положительная э.д.с. в генераторе, изобра­женном на фиг. 22.6, создает напряжение V=e с более высоким потенциалом на зажиме а.

Можно сделать генератор и по-другому. Внутри он будет уст­роен совершенно иначе, но снаружи, на зажимах, он ничем не будет отличаться от только что описанного. Представим катуш­ку, которая вращается в неподвижном магнитном поле (фиг.22.7).

Мы изобразили магнитную палочку, чтобы показать наличие магнитного поля, но его можно, конечно, заменить любым дру­гим источником постоянного магнитного поля, скажем добавоч­ной катушкой, по которой течет постоянный ток. Как показано на рисунке, вращающаяся катушка связана с внешним миром скользящими контактами, или «кольцами». Нас опять интересу­ет разность потенциалов, которая появляется между клеммами а и b, т. е. интеграл от электрического поля между а и b по пути снаружи генератора.

Теперь в этой системе уже нет изменяющихся магнитных по­лей и на первый взгляд кажется удивительным, откуда на зажи­мах генератора берется напряжение. Действительно, ведь нигде же внутри генератора нет никаких электрических полей. Мы, как обычно, предполагаем для наших идеальных элементов, что внутри них провода сделаны из идеально проводящего материа­ла; а, как уже неоднократно повторялось, электрическое поле внутри идеального проводника равно нулю. Но это не всегда верно. Это неверно тогда, когда проводник движется в магнитном поле. Правильное утверждение таково: общая сила, действую­щая на произвольный заряд внутри идеального проводника, должна быть равна нулю. Иначе в нем возник бы бесконечный ток свободных зарядов. Так что надо брать сумму электрическо­го поля Е и векторного произведения скорости проводника v на магнитное поле В; это есть полная сила, действующая на еди­ничный заряд, и вот она-то всегда равна нулю:

F=E+vXB=0 (в идеальном проводнике). (22.12)

А наше прежнее утверждение о том, что внутри идеальных про­водников электрических полей не бывает, верно лишь тогда, когда скорость проводника v равна нулю; в противном случае справедливо выражение (22.12).

Вернемся к нашему генератору, показанному на фиг. 22.7. Теперь мы видим, что контурный интеграл от электрического поля Е между зажимами а и bпо проводящим путям генерато­ра должен быть равен контурному интегралу от vXB по тому же пути;

 


 


Фиг. 22.7. Генератор, состоящий из катушки, вращающейся в неподвиж­ном магнитном поле.

 

Однако по-прежнему остается верным, что контурный интеграл от Е по замкнутой петле, включая возвращение от зажима b к а вне генератора, должен быть равен нулю, потому что меняю­щиеся магнитные поля отсутствуют. Так что первый интеграл в (22.13) по-прежнему равен V — напряжению на зажимах. Ока­зывается, что интеграл в правой части (22.13) просто равен быст­роте изменения потока через катушку, а значит, по правилу по­тока, равен э.д.с. катушки. И опять получается, что разность потенциалов между зажимами равна э.д.с. цепи в согласии с уравнением (22.11). Так что все равно, какой у нас генератор: меняется ли в нем магнитное поле возле закрепленной катушки, вертится ли в закрепленном магнитном поле катушка,— внешние свойства генераторов одни и те же. На клеммах всегда сущест­вует напряжение V, которое не зависит от тока в цепи, а опреде­ляется только условиями внутри генератора, формируемыми по нашему произволу.

Поскольку мы пытаемся понять работу генератора, основы­ваясь на уравнениях Максвелла, может возникнуть вопрос об обычном химическом элементе, о батарейке для карманного фо­нарика. Это тоже генератор, т. е. источник напряжения, хотя и применяется он только в цепях постоянного тока. Проще всего разобраться в элементе, изображенном на фиг. 22.8. Представьте две металлические пластинки, погруженные в какой-то химиче­ский раствор. Пусть раствор содержит в себе положительные и отрицательные ионы. Мы предположим еще, что ионы одного сорта, ска­жем отрицательные, много массивнее ионов, имеющих противоположную полярность, так что их движение в растворе (диффузия) происходит намного медленнее.

 


 

 

Фиг. 22.8. Химический элемент.

Наконец, положим, что тем или иным способом удалось добиться изменения кон­центрации раствора от места к месту, так что число ионов обеих полярностей, скажем у нижней пластинки, становится намного больше концентрации ионов у верхней пластинки. Благодаря большей подвижности положительные ионы легче проникнут в область низких концентраций, так что будет наблюдаться легкий избыток положительных зарядов, достигающих верхней плас­тинки. Она зарядится положительно, а нижняя будет обладать избытком отрицательного заряда. По мере того как все боль­ше и больше зарядов диффундирует к верхней пластинке, по­тенциал ее будет расти, пока возникающее между пластинками электрическое поле не создаст силу, действующую на ионы, которая компенсирует их избыточную подвижность. Два элек­трода быстро достигают разности потенциалов, характерной для внутреннего устройства этого элемента.

Рассуждая так же, как это мы делали, когда говорили об идеальном конденсаторе, мы убедимся, что, если нет избытка диффузии ионов какого-либо знака, разность потенциалов меж­ду зажимами а и b равна просто контурному интегралу от элект­рического поля между электродами. Конечно, между конденса­тором и таким химическим элементом есть существенная разни­ца. Если на мгновение закоротить выводы конденсатора, он разрядится и разности потенциалов между выводами уже не будет. В случае же химического элемента ток с зажимов можно снимать непрерывно, никак не изменяя при этом э.д.с., пока, конечно, реактивы в элементе не израсходуются. Известно, что в реальном элементе разность потенциалов на зажимах убывает по мере возрастания снимаемого с него тока. Но при нашей идеализации задачи легко себе представить, что у нас есть идеальный элемент, в котором напряжение на электродах не зависит от силы тока. Тогда реальный элемент можно рассма­тривать как идеальный, соединенный последовательно с сопро­тивлением.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.