Сделай Сам Свою Работу на 5

Транспорт факторов вирулентности к мишеням





Схема экзогенной индукции

 

 

Секреция белков.

В принципе рост плазматической мембраны и её производных у бактерий происходит тем же образом, что и образование мембран у эукариотических клеток.

Как известно, синтез белков у бактерий осуществляется на 70s рибосомах, которые также, как и у клеток высших организмов, имеют двоякую локализацию. Большая часть рибосом бактериальных клеток образует полисомы в цитоплазме, около 25% рибосом связано с плазматической мембраной. Такие рибосомы участвуют как в синтезе белков мембраны, так и в синтезе экскретируемых белков. Многие бактериальные клетки получают питательные вещества за счет деградации полимеров около бактериальной поверхности. Для этого бактерии должны выделять гидролизирующие ферменты в окружающую среду. Это они делают намного проще, чем эукариотические клетки: часть их рибосом, локализованных на внутренней (цитоплазматической) поверхности плазматической мембраны, синтезирует белки, которые, подобно секреторным белкам, проходят через мембрану и оказываются вне клетки. Выделенные гидролазы застревают в компонентах муреиновой бактериальной стенки и там функционируют. На других рибосомах, связанных с мембранами, идет синтез белков для построения самой мембраны, подобно тому, что происходит в гранулярном ЭР эукариотических клеток. Так что в этом отношении бактерию можно уподобить вакуоли гранулярного ЭР, вывернутой наизнанку.



На примере бактерий хорошо изучен путь синтеза липидных компонентов мембран. Так, было найдено, что синтез фосфоэтидилэтаноламина происходит с помощью ферментов, являющихся интегральными белками плазматической мембраны, активные участки которых находятся на цитоплазматической стороне мембраны. Синтезированные здесь липиды встраиваются во внутренний липидный слой. Оказалось, что новосинтезированные липиды довольно быстро обнаруживаются и во внешнем слое мембраны за счет работы переносчиков – флиппаз.

транспорт факторов вирулентности к мишеням

Различают два варианта транспорта экзогенных веществ из цитоплазмы: это - секреция и экспорт. Под секрецией понимают транспорт через внутреннюю и внешнюю мембраны, под экспортом - транспорт через цитоплазматическую мембрану в периплазматическое пространство. В настоящее время описаны 4 основных типа секреции протеинов из цитоплазмы микроорганизмов [2, 3]. Для II и IV типа характерно наличие двух отдельных этапов транспорта через внутреннюю и внешнюю мембраны. При этом механизм транспорта через цитоплазматическую мембрану одинаков для обоих типов и предполагает участие комплекса Sec-белков, локализованных во внутренней мембране. Транспорт через внешнюю мембрану у II типа секреции осуществляется без участия дополнительных белков, секретируемый белок формирует пору во внешней мембране благодаря аутокаталитическим процессам, при секреции по IV типу для осуществления этого этапа необходимы дополнительные белки. При транспорте протеинов по I типу секреция происходит в один этап, для ее осуществления необходимы три белка.



Наибольший интерес представляет система секреции III типа, для ее функционирования необходимы 20 белков. Главной особенностью системы III типа является то, что белковые факторы вирулентности секретируются не в окружающую среду, а транслоцируются непосредственно в цитоплазму клеток хозяина, что позволяет рассматривать эту систему как фактор вирулентности. В пользу такой оценки свидетельствует и то, что экспрессия белков системы регулируется в зависимости от условий окружающей среды (контакта с эукариотическими клетками), хотя детали такой регуляции еще не ясны.

Белки системы секреции III типа, выявленные у таксономически далеких микроорганизмов (например, у Pseudomonas aeruginosa и Salmonella typhimurium), характеризуются значительной гомологией, что позволяет с высокой долей вероятности предположить общность их происхождения и последующее горизонтальное распространение среди различных видов грамотрицательных бактерий. Здесь же необходимо отметить, что наличие у таксономически далеких микроорганизмов сходных генов вирулентности является скорее правилом, чем исключением. Гены вирулентности обычно образуют кластеры, получившие название островков патогенности, способные к горизонтальному распространению.



В настоящее время нет достаточно убедительных данных, что экспрессия механизмов III типа секреции регулируется посредством двухкомпонентной системы передачи сигнала, однако связь между этими фундаментальными механизмами вирулентности вполне вероятна.

Одним из универсальных регуляторов транскрипции является механизм чувства кворума (quorum sensing) [4]. Принцип действия механизма заключается в активации транскрипции специфических генов при достижении порогового уровня связывания белка-активатора транскрипции (LuxR) с низкомолекулярным аутоиндуктором (AI). Описанный механизм опосредует давно известный феномен большей скорости роста культур микроорганизмов при больших величинах посевной дозы. Есть данные об участии этого механизма в регуляции экспрессии детерминант вирулентности P.aeruginosa, следовательно, он также может быть источником мишеней для разработки новых препаратов.

Перспективы разработки антибактериальных препаратов, направленных на подавление экспрессии факторов вирулентности, в настоящее время выглядят вполне реальными. Описаны экспериментальные соединения, подавляющие активность двухкомпонентной системы передачи сигнала [5], Sec-белков систем секреции II и IV типов [6]. Возможно, в отношении таких препаратов более правильно применять термин антиинфекционные, а не антибактериальные. Ингибиторы детерминант вирулентности, вероятно, будут проявлять лишь незначительную антибактериальную активность in vitro и, что весьма ценно, не будут подавлять пролиферацию микроорганизмов, лишенных детерминант вирулентности. Таким образом, открывается новый уровень специфичности воздействия на инфекционный процесс.

При всей очевидности больших потенциальных возможностей у будущих препаратов новых классов, здоровый скептицизм требует признать, что окончательное решение проблемы этиотропной терапии инфекционных болезней вряд ли возможно. Крайне трудно предсказать все возможные препятствия при поиске, изучении специфической активности, токсичности и клинической эффективности принципиально нового класса соединений. Практически невозможно также предвидеть реакцию микроорганизмов на вмешательство в тонкий процесс регуляции жизненно важных функций.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.