Сделай Сам Свою Работу на 5

Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам в идеальном газе.

Термодинамика

Первое начало термодинамики. Правило знаков для теплоты и работы. Формула для вычисления работы идеального газа. Работа газа в изобарном и в изотермическом процессе.

(1)

Уравнение (1) выражает первое начало термодинамики: теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Выражение (1) в дифференциальной форме будет иметь вид

или в более корректной форме

(2)

где dU — бесконечно малое изменение (приращение) внутренней энергии системы, δA — элементарная работа, δQ — бесконечно малое количество теплоты. В этом выражении dU является полным дифференциалом, а δA и δQ таковыми не являются. В дальнейшем будем использовать запись первого начала термодинамики в форме (2).

Из формулы (1) мы видим, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т. е. в джоулях (Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии равно нулю: ΔU=0. Тогда, согласно первому началу термодинамики,

т. е. вечный двигатель первого рода — периодически действующий двигатель, совершающий бoльшую работу, чем сообщенная ему извне энергия, — невозможен (одна из формулировок первого начала термодинамики).

Правило знаков: если тепло передаётся от окружающей среды данной системе, и если система производит работу над окружающими телами, при этом . Учитывая правило знаков, первое начало термодинамики можно записать в виде:

  ,    

изменение внутренней энергии тела равно разности сообщаемой телу теплоты и произведённой телом работы.

Работа, совершаемая при изменении объема газа , .

Работа при изобарическом процессе

, но р = const , поэтому

 

Работа при изотермическом процессе
В этом случае , поэтому .

 

Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам в идеальном газе.

1. Изохорический процесс (V = const). Работа в этом процессе равна нулю. Процесс сводится к теплообмену системы с окружающей средой. Первый закон термодинамики при этом условии принимает вид:

Q = ΔU. (4.18)

количество теплоты, полученное системой, если она представляет собой один моль идеального газа, равно

. (4.26)

Поскольку CV > 0 для всех веществ, то знаки Q и ΔТ совпадают. При Q > 0 (энергия подводится к системе) температура системы повышается, т.е. ΔТ > 0, при Q < 0 система охлаждается, т.е. ΔТ < 0.

Если в состав системы входит ν молей идеального газа, то равенство (4.26) представляется в виде:

, (4.27)

где m – масса газа, μ – его молекулярная масса.

 

2. Изобарический процесс (Р = const). На основании определения теплоемкости количество теплоты Q, подведенное к системе в изобарном процессе, для одного моля идеального газа равно:

. (4.28)

Поскольку для любой системы CP > 0, то при Q > 0 (система получает энергию извне) ΔТ > 0 и Т2 > T1, система нагревается. При Q < 0 (система отдает энергию окружающей среде) ΔТ < 0, Т2 < T1, система охлаждается. Уравнение (4.28) для ν молей идеального газа записывается в виде:

. (4.29)

Найдем работу, которую совершает система в изобарическом процессе, переходя из состояния 1 в состояние 2. Начальное и конечное состояния системы описываются уравнениями

PV1 = RT1, PV2 = RT2, (4.28)

из которых следует

. (4.30)

Обобщение равенства (4.30) для случая молей в системе приводит к результату:

. (4.31)

3. Изотермический процесс. При изотермическом процессе температура системы не изменяется (ΔТ = 0), а, следовательно, ее внутренняя энергия, являясь для идеального газа только функцией температуры, остается постоянной, то есть ее изменение ΔU = 0. Это значит, что сообщаемое системе количество теплоты идет на совершение работы.

Рис. 4.9

Найдем работу расширения моля идеального газа в изотермическом процессе. Изотерма в координатах РV представляется гиперболой (рис. 4.9). Как уже было рассмотрено ранее, работу расширения газа от начального объема V1 до V2 можно найти, используя равенство :

.  

Давление моля идеального газа, как следует из уравнения состояния, равно

.  


и выражение для работы принимает вид:

 

. (4.32)

Очевидно, что чем меньшие интервалы изменения объема ΔVi выбираются для вычисления работы, тем точнее будет получено ее значение. Предельный переход в соотношении (4.32) приводит к выражению:

, (4.33)

где V1 и V2 – объемы, занимаемые системой соответственно в начальном и конечном состояниях. Обобщая формулу (4.33) на случай системы, содержащей ν молей газа, получаем равенство:

. (4.34)

Пользуясь уравнением изотермического процесса (PV = const), равенство (4.34) можно представить через другие параметры состояния системы:

, (4.35)

где Р1 и Р2 – давление газа в начальном и конечном состояниях.

4. Адиабатический процесс. Адиабатический процесс – процесс, идущий без теплообмена с окружающей средой. Это значит, что система должна быть теплоизолирована, либо процесс должен протекать так быстро, что за время процесса не происходит теплообмена системы с окружающей средой. Условие адиабатичности процесса означает, что Q = 0.

Уравнение первого закона термодинамики для адиабатического процесса принимает вид:

. (4.36)

Из последнего соотношения следует, что А = – ΔU и для одного моля идеального газа равно

. (4.37)

Из (4.37) очевидно, что если адиабатически изолированная система подвергается сжатию (внешние силы совершают над системой работу, поэтому работа отрицательна), то ΔU > 0. Это означает, что адиабатическое сжатие идеального газа приводит к повышению его температуры. Напротив, адиабатическое расширение идеального газа (работа совершается самой системой, поэтому она положительна) может происходить только за счет уменьшения его внутренней энергии (ΔU < 0), поэтому температура газа при его адиабатическом расширении должна понижаться.

Все рассмотренные выше процессы могут быть представлены одним уравнением – уравнением политропического процесса. Политропический процесс – это процесс, идущий с постоянной теплоемкостью. Уравнение политропического процесса имеет вид

,  

где – показатель политропы.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.