Сделай Сам Свою Работу на 5

Работа. Теплота. Первое начало термодинамики. Энтальпия

Основные понятия. ТДС. ТДП. Идеальный газ

Термодинамика- это раздел физики, в котором изучают термодинамические системы (тела) и между которыми возможен обмен энергией, без учёта микроскопического строения тел.

Термодинамическая система – совокупность тел, способных энергетически взаимодействовать между собой и с другими телами и обмениваться с ними веществом и энергией. Все тела вне указанной совокупности представляют собой внешнюю среду.

Идеальный газ — математическая модель газа, в которой в рамках молекулярно-кинетической теории предполагается, что: 1) потенциальной энергией взаимодействия частиц, составляющих газ, можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объём частиц газа пренебрежимо мал; 3) между частицами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосудаабсолютно упруги; 4) время взаимодействия между частицами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц[1]. В рамках термодинамики идеальным называется газ, подчиняющийся термическому уравнению состояния Клапейрона — Менделеева.

Уравнение состояния идеального газа

 

Работа. Теплота. Первое начало термодинамики. Энтальпия

ТеплотаQ представляет собой количественную меру хаотического движения частиц данной системы или тела. Энергия более нагретого тела в форме теплоты передается менее нагретому телу. При этом не происходит переноса вещества.

Работа А является количественной мерой направленного движения частиц, мерой энергии, передаваемой от одной системы к другой за счет перемещения вещества от одной системы к другой под действием тех или иных сил, например гравитационных. Теплоту и работу измеряют в джоулях (Дж), килоджоулях (кДж) и мегаджоулях (МДж). Положительной считается работа, совершаемая системой против внешних сил (А > 0) и теплота, подводимая к системе (Q > 0). Теплота и работа зависят от способа проведения процесса, т.е. они являются функциями пути.



Теплотой называется процесс изменения внутренней энергии при постоянных внешних параметрах ч = = const. Тела могут передавать энергию друг другу непосредственно при контакте или излучая ее. Теплоту называют микроскопическим преобразованием энергии. Процесс передачи теплоты определяется работой, которую совершают молекулы при хаотическом тепловом движении. Количество теплоты имеет в СИ следующую размерность: [Q] = Дж. Также пользуются единицами теплоты – калориями, 1 кал = 4,1868 Дж. Если тело, участвующее в процессе, принимает количество теплоты, то его записывают со знаком плюс, а если отдает, то количество теплоты имеет знак минус.

Формула для определения элементарного количества теплоты, которое сообщается телу для изменения его температуры:

dQ= CdT,

где С – теплоемкость тела.

С = dQ / dT.

Работой называется процесс изменения внутренней энергии за счет изменения внешних параметров при dQ=0. Элементарной работой называется работа, которую совершает система при бесконечно малом квазистатическом расширении, вследствие чего происходит увеличение объема системы на dV:

dA= Fdx = PSdx = PdV,

где Sdx = dV – приращение объема;

S– площадь поверхности, перпендикулярно которой действует сила F;

Р – давление.

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики:

Q = ΔU + А.

Если к системе подводится теплота Q, то она расходуется на изменение внутренней энергии системы ΔU и на совершение системой работы А над окружающей средой.

Теплоту и работу можно измерить, отсюда,

ΔU = Q – А.

Первый закон термодинамики является формой выражения закона сохранения энергии. Согласно этому закону, энергия не может ни создаваться, ни исчезать, но может превращаться из одной формы в другую. Его справедливость доказана многовековым опытом человечества.

Если система осуществляет переход из одного состояния в другое при постоянном объеме ( реакция протекает в автоклаве), то работа расширения системы

А = рΔV = 0

и

Qv= ΔU = U2 – U1,

т.е. если реакция протекает при постоянном объеме, то выделение или поглощение теплоты Q связано с изменением внутренней энергии системы.

Если на систему не действуют ни какие другие силы, кроме постоянного давления, т.е. химический процесс осуществляется в изобарных условиях, и единственным видом работы является работа расширения, то первый закон термодинамики запишется:

Qp = ΔU + pΔV.

Подставив ΔU = U2U1, получим:

Qp = U2U1 + pV2pV1 = (U2 + pV2) ‑ (U1 + pV1).

Характеристическая функция

U + pV = H

называется энтальпией системы.

Qp = H2 - H1, и Qp = ΔH.

В случае изобарического процесса теплота, подведенная к системе, равна изменению энтальпии системы.

Абсолютное значение энтальпии системы определить невозможно, но экспериментально можно определить Qp, т.е. изменение энтальпии ΔН, при переходе из одного состояния в другое. Н -это термодинамическая функция состояния. Если ΔН > 0 - энтальпия системы возрастает, если ΔН < 0-энтальпия системы уменьшается, т.е. теплота выделяется системой.

Как и другие характеристические функции, энтальпия зависит от количества вещества, поэтому ее изменение ΔН, обычно относят к 1 моль и выражают в кДж/моль.

 

Энтальпия — это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия — это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия — это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии — британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

 

 

Теплоемкость

Одним из важнейших понятий в термодинамике является теплоемкость. Теплоемкостью называется количество теплоты Q(Дж), которое нужно подвести к телу или отнять от него для изменения температуры тела на 1 K.

Теплоемкость С вычисляется по формуле:

C = dQ/ dT, Дж/К.

Удельная массовая теплоемкость - это количество теплоты, необходимое для нагрева 1 кг газа на один градус. Она обозначается буквойс, имеет размерность Дж/(кг·град) и определяется как

 

Удельная мольная теплоемкость - это количество теплоты, необходимое для нагрева одного моля (киломоля) газа на один градус. Ее обозначение сμ, размерность Дж/(кмоль·град), расчетное выражение соответствует произведению молярной массы газа на его удельную массовую теплоемкость, т.к. в одном киломоле μ килограммов газа

 

где μ - молярная масса газа, кг/кмоль.

Удельная объемная теплоемкость газа - это количество теплоты необходимое для нагрева одного кубического метра газа на один градус. Ее обозначение с', размерность Дж/(м3·град), расчетное выражение соответствует следующим соотношениям

 

где ρ - плотность газа, кг/м3;
v - удельный объем газа, м3/кг;
Vμ - объем киломоля газа, м3/кмоль.

Плотность газа и объем киломоля газа зависят от температуры и давления, поэтому при различных параметрах объемная теплоемкость одного и того же газа различна даже в случае постоянной ее удельной массовой теплоемкости. Для практического пользования такой теплоемкостью необходимо к каждому ее значению указывать соответствующие ему значения температуры и давления газа, что очень неудобно. В справочной литературе принято давать объемную теплоемкость газа, отнесенную к одному кубическому метру газа, взятому при нормальных физических условиях – 0 0С и 760 мм рт.ст. (нм3). При нормальных условиях один киломоль любого идеального газа занимает объем 22,4 м3. При этих условиях удельную объемную теплоемкость идеального газа удобно определять как

 


в размерности этой теплоемкости присутствует нормальный кубический метр газа Дж/(нм3·град).

 

 



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.