Сделай Сам Свою Работу на 5

Электроемкость проводников

Сообщенный проводнику заряд q распределяется по его поверхности так, чтобы напряженность поля внутри проводника была равна нулю. Если проводнику, уже несущему заряд q , сообщить еще заряд той же величины, то второй заряд должен распределиться по проводнику точно также, как и первый, в противном случае он создает в проводнике поле, не равное нулю. Таким образом, различные по величине заряды распределяются на удаленном от других тел (уединенном) проводнике подобным образом, т.е. отношение плотностей заряда в двух произвольных точках поверхности проводника при любой величине заряда будет одно и то же.

Отсюда вытекает, что потенциал уединенного проводника пропорционален находящемуся на нем заряду. Действительно, увеличение в некоторое число раз заряда приводит к увеличению в тоже число раз напряженности поля в каждой точке окружающего проводника пространства, т.е.

Вводя соответствующий коэффициент пропорциональности, запишем или

(15.2)

где С - называется электроемкостью.

Таким образом, электроемкость уединенного проводника есть физическая величина численно равная величине заряда, который необходимо сообщить данному проводнику для увеличения его потенциала на единицу. В СИ единицей емкости является Фарад (Ф).

Определим электроемкость уединенного шара. Потенциал заряженного шара радиуса R

Сравнивая с получаем

(15.3)

 

Конденсаторы

Для получения устройств, которые при небольшом относительно среды потенциале накапливали бы на себе (конденсировали) заметные по величине заряды используют тот факт, что электроемкость проводника возрастает при приближении к нему других тел. Действительно, под действием поля, создаваемого заряженными проводниками, на поднесенном к нему теле возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды (рис.15.5). Заряды, противоположные по знаку заряду проводника q располагаются ближе к проводнику, чем одноименные с q, и, следовательно, оказывают большое влияние на его потенциал.

Поэтому при поднесении к заряженному проводнику какого либо тела напряженность поля уменьшается, а, следовательно, уменьшается потенциал проводника. Согласно уравнение это означает увеличение емкости проводника.

Конденсатор состоит из двух проводников (обкладок) (рис.15.6), разделенных прослойкой диэлектрика. При приложении к проводнику некоторой разности потенциалов его обкладки заряжаются равными по величине зарядами противоположного знака. Под электроемкостью конденсатора понимается физическая величина, пропорциональная заряду q и обратно пропорциональна разности потенциалов между обкладками

Определим емкость плоского конденсатора.

Если площадь обкладки S , а заряд на ней q, то напряженность поля между обкладками

С другой стороны разность потенциалов между обкладками откуда

 

Энергия электрического поля

Энергия системы зарядов

Найдем сначала выражение для потенциальной энергии системы двух точечных зарядов и , находящихся на расстоянии . Когда заряды удалены друг от друга на бесконечность, они не взаимодействуют. Положим в этом случае их энергию равной нулю. Сблизим заряды на заданное расстояние . При этом мы должны будем совершить работу против электрических сил, которая пойдет на увеличение потенциальной энергии системы. Сближение зарядов можно произвести, приближая к либо к .Работа переноса заряда из бесконечности в точку, удаленную от на

где - потенциал, создаваемый зарядом в той точке, в которую перемещается заряд . Аналогично работа переноса заряда из бесконечности в точку, удаленную от на , равна

где - потенциал, создаваемый зарядом в той точке, в которую перемещается заряд . Значение работ в обоих случаях одинаковы, и каждое из них выражает энергию системы

Для того чтобы в выражение энергии системы оба заряда входили симметрично, запишем его следующим образом:

Эта формула дает энергию системы двух зарядов. Перенесем из бесконечности еще один заряд и поместим его в точку, находящуюся на расстоянии от и от . При этом совершим работу

где - потенциал, создаваемый зарядами и в той точке, в которую мы поместили заряд . В сумме с или работа будет равна энергии трех зарядов:

Последнее выражение можно привести к виду

Добавляя к системе Зарядов последовательно и т.д., можно убедиться в том, что в случае n зарядов потенциальная энергия системы равна

(16.1)

где - потенциал, создаваемый в той точке, где находится , всеми зарядами, кроме i-го.

 



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.