Сделай Сам Свою Работу на 5

Соотношения сторон мониторов

Санкт-Петербург

История открытия жидких кристаллов

Впервые жидкие кристаллы были обнаружены в 1888 году австрийским ботаником Фридрихом Райнитцером в ходе исследования холестеринов в растениях. Он выделил вещество, имеющее кристаллическую структуру, но при этом странно ведущее себя при нагреве. При достижении 145.5°C вещество мутнело и становилось текучим, но при этом сохраняло кристаллическую структуру вплоть до 178.5°C, когда, наконец, превращалось в жидкость. Райнитцер сообщил о необычном явлении своему коллеге – немецкому физику Отто Леманну, который выявил ещё одно необычное качество вещества: эта псевдожидкость в электромагнитных и оптических свойствах проявляла себя как кристалл. Именно Леманн и дал название одной из ключевых технологий отображения информации на сегодняшний день – «жидкий кристалл».

Технический словарь разъясняет термин «жидкий кристалл» как мезофазу, переходное состояние вещества между твёрдым и изотропным жидким. В этой фазе вещество сохраняет кристаллический порядок расположения молекул, но при этом обладает значительной текучестью и стабильностью в широком диапазоне температур.

Почти столетие это открытие относилось к рангу удивительных особенностей природы, пока в 70-х годах ХХ века компания Radio Corporation of America не представила первый работающий монохромный экран на жидких кристаллах. Вскоре после этого технология начала проникать на рынок потребительской электроники, в частности, наручных часов и калькуляторов. Однако до появления цветных экранов было ещё очень далеко.

Принцип работы жидкокристаллических экранов

Работа жидкокристаллических матриц основана на таком свойстве света, как поляризация. Обычный свет является неполяризованным, т.е. амплитуды его волн лежат в огромном множестве плоскостей. Однако существуют вещества, способные пропускать свет только с одной плоскости. Эти вещества называют поляризаторами, поскольку прошедший сквозь них свет становится поляризованным только в одной плоскости.



Если взять два поляризатора, плоскости поляризации которых расположены под углом 90° друг к другу, свет через них пройти не сможет. Если же расположить между ними что-то, что сможет повернуть вектор поляризации света на нужный угол, мы получим возможность управлять яркостью свечения, гасить и зажигать свет так, как нам хочется. Таков, если описывать вкратце, принцип работы ЖК-матрицы. Конкретную реализацию этого принципа в разных матрицах мы рассмотрим ниже.

В упрощенном виде матрица жидкокристаллического дисплея состоит из следующих частей:

· CCFL (ртутная) лампа подсветки;

· система отражателей и полимерных световодов, обеспечивающая равномерную подсветку;

· фильтр-поляризатор;

· стеклянная пластина-подложка, на которую нанесены контакты;

· жидкие кристаллы;

· ещё один поляризатор;

· снова стеклянная подложка с контактами.

Строение ЖК-матрицы

В цветных матрицах каждый пиксель формируется из трёх цветных точек (красной, зелёной и синей), поэтому добавляется ещё и цветной фильтр. В каждый момент времени каждая из трёх ячеек матрицы, составляющих один пиксель, находится либо во включённом, либо в выключенном положении. Комбинируя их состояния, получаем оттенки цвета, а включая все одновременно – белый цвет.

Глобально матрицы делятся на пассивные (простые) и активные. В пассивных матрицах управление производится попиксельно, т.е. по порядку от ячейки к ячейке в строке. Проблемой, встающей при производстве ЖК-экранов по этой технологии, стало то, что при увеличении диагонали увеличиваются и длины проводников, по которым передаётся ток на каждый пиксель. Во-первых, пока будет изменён последний пиксель, первый успеет потерять заряд и погаснуть. Во-вторых, большая длина требует большего напряжения, что приводит к росту помех и наводок. Это резко ухудшает качество картинки и точность цветопередачи. Из-за этого пассивные матрицы применяются только там, где не нужны большая диагональ и высокая плотность отображения.

Для преодоления этой проблемы были разработаны активные матрицы. Основой стало изобретение технологии, известной всем по аббревиатуре TFT, что означает Thin Film Transistor – тонкоплёночный транзистор. Благодаря TFT, появилась возможность управлять каждым пикселем на экране отдельно. Это резко сокращает время реакции матрицы и делает возможными большие диагонали матриц. Транзисторы изолированы друг от друга и подведены к каждой ячейке матрицы. Они создают поле, когда им приказывает управляющая логика – драйвер матрицы. Для того, чтобы ячейка не потеряла заряд преждевременно, к ней добавляется небольшой конденсатор, который играет роль буферной ёмкости. С помощью этой технологии удалось радикально уменьшить время реакции отдельных ячеек матрицы.

Виды матриц

Различия между разными типами матриц обусловлены расположением жидких кристаллов и, как следствие, особенностями прохождения через них света.

TN+film

Кристаллы в TN-матрице

Первой и наиболее простой технологией производства матриц была технология TN (Twisted Nematic, скрученные нематические), представленная в далёком 1973 году. Особенностью нематических кристаллов является то, что они выстраиваются друг за другом, как солдаты в колонне. Организация их в матрице выглядит как спираль. Для этого на стеклянных подложках делаются специальные бороздки, благодаря которым первый кристалл в спирали всегда расположен в одной и той же плоскости. Следующие за ним кристаллы располагаются друг за другом по спирали, пока последний не укладывается в аналогичную бороздку на второй подложке, расположенную под углом 90° к первой. К каждому концу спирали подведены электроды, которые и влияют на расположение кристаллов созданием электрического поля. При отсутствии напряжения и поля кристаллы поворачивают ось поляризации света, прошедшего через первый поляризатор, на 90°, чтобы он оказался в одной плоскости со вторым поляризатором и беспрепятственно прошёл сквозь него. Так получается белый пиксель. Если подать напряжение на электроды, спираль начинает сжиматься. Максимальное значение напряжения соответствует такому положению, при котором кристаллы не поворачивают поляризованный свет, и он поглощается вторым поляризатором (чёрный пиксель). Для получения градаций (оттенков серого) напряжение варьируется, тогда кристаллы занимают такое положение, при котором свет проходит через фильтры неполностью.

Принцип работы ЖК-матриц на примере TN

Из-за особенностей TN чёткое формирование оттенков сильно затруднено, и по сей день цветопередача является их ахиллесовой пятой.

Проблемой первых TN-матриц были очень небольшие углы обзора, при которых ячейка была видна с нужным цветом. Поэтому была разработана специальная плёнка, которая накладывается сверху на матрицу и расширяет углы обзора. Технология стала называться TN+film. В этом исполнении она существует и по сей день. Разъясним её. Угол между нормалью фронта световой волны и углом директора молекул ЖК (так научно называются те самые бороздки) равен j. Интенсивность пропущенного через 2 поляризатора света равна sin2 j. С практической точки зрения эти построения означают, что при полностью включённом пикселе угол j составляет не более 30°, а интенсивность света меняется в пределах 10%. А вот в среднем положении при уровне серого 50% угол jсоставит 45°, а изменение интенсивности – примерно 90%. Естественно, вряд ли кого устроит то, что, пошевелившись на стуле, он увидит вместо красного цвета зелёный. Поэтому сверху на матрицу клеится плёнка, имеющая другое значение j, из-за чего изменение интенсивности при смене угла обзора уже не так заметно. Сегодняшние матрицы обеспечивают нормальное изображение при отклонении от центра примерно на 50-60° по горизонтали (угол обзора 100-120°), а вот с вертикальными углами дело обстоит хуже. При отклонении от центра по вертикали хотя бы на 30 градусов нижняя часть матрицы начинает светлеть, иногда появляются тёмные полосы и т.д.

Ещё одна особенность TN состоит в том, что положением пикселя по умолчанию (т.е. при отключённом токе на электродах) является белый цвет. При этом, если транзистор сгорает, мы получаем всегда ярко горящую точку на мониторе. А если учесть, что добиться абсолютно точного положения кристаллов невозможно, на TN-матрицах невозможно добиться и хорошего отображения чёрного цвета.

В связи с ограниченной скоростью пассивных матриц для уменьшения скорости реакции была разработана технология STN (Super Twisted Nematic). Смысл её заключается в том, что бороздки на стеклянных подложках, ориентирующие первый и последний кристалл, расположены под углом более 200° друг к другу, а не 90°, как в обычной TN. В таком случае переход между крайними состояниями резко ускоряется, однако становится крайне сложно управлять кристаллами в средних положениях. Более-менее стабильными они были при углах между бороздками около 210°. Однако без недостатков не обошлось и тут: при отклонении от центра ячейки белый свет становился либо грязно-жёлтым, либо голубоватым. Чтоб хоть как-то сгладить эту проблему, инженеры Sharp разработали DSTN – Dual-Scan Twisted Nematic. Суть технологии состоит в том, что экран делится на две части, каждая из которых управляется отдельно. Помимо увеличения скорости, преимуществом технологии было смягчение искажений цветов, а недостатком – большой вес и высокая стоимость.

Итак, выделим достоинства и недостатки матриц TN+film (во всех исполнениях) на сегодняшний день:

Плюсы Минусы
· высокая скорость переключения ячеек · низкая цена · абсолютно низкое качество цветопередачи · малые углы обзора · низкая контрастность (соотношение между белым и чёрным)

К сожалению, подавляющее большинство производимых сегодня ЖК-мониторов самой ходовой диагонали 17” производится на базе TN+film из-за дешевизны технологии. В принципе, для нетребовательного к качеству изображения пользователя ничего страшного в этом нет, однако для работы с графикой придётся обратить взор на другие матрицы.

S-IPS

Расположение кристаллов в матрицах IPS

Компания Hitachi решила не бороться с недостатками TN, а просто применить другую технологию. За основу было взято открытие Гюнтера Баура, датируемое 1971 годом. Разработанная технология получила название Super-TFT, а при коммерциализации – IPS (In-Plane Switching). Кардинальное отличие данной технологии от TN состоит в расположении кристаллов: они не скручены в спираль, а расположены параллельно друг другу вдоль плоскости экрана. Оба электрода находятся на нижней стеклянной подложке. При отсутствии напряжения на электродах свет не пропускается через второй поляризационный фильтр, плоскость поляризации которого расположена под углом 90° к первому. Таким образом, у IPS чёрный цвет остается чёрным, а не тёмно-серым. Кроме того, углы обзора составляют 170° как по горизонтали, так и по вертикали.

Недостатки технологии обусловлены её достоинствами.

Во-первых, чтобы повернуть весь массив расположенных параллельно кристаллов, требуется время. Поэтому время реакции у мониторов на базе IPS, а также эволюционных продолжений этой технологии S-IPS (Super-IPS) и DD-IPS (DualDomain-IPS) выше, чем у TN+film. Среднее значение для этого типа матриц – 35-25 мс.

Во-вторых, расположение электродов на одной подложке требует большего напряжения для создания достаточного поля, чтобы повернуть кристаллы в нужное положение. Поэтому мониторы на основе IPS-матриц потребляют больше электроэнергии.

В-третьих, требуются более мощные лампы, чтобы просветить панель и при этом обеспечить достаточную яркость.

В-четвёртых, эти панели банально дороги, и до недавнего времени устанавливались только в мониторы с большими диагоналями.

Одним словом, мониторы на основе матриц этого типа остаются идеальным выбором для дизайнеров и других специалистов, работа которых критична к качеству цветопередачи и некритична к скорости переключения ячеек.

 

MVA/PVA

Расположение кристаллов в матрицах MVA/PVA

Поскольку с недостатками TN+film бороться стало практически невозможно, а повысить быстродействие S-IPS – так и просто нереально, компания Fujitsu разработала и представила в 1996 году технологию VA (Vertical Alignment). Для коммерческого использования, впрочем, эта технология не подходила и была развита до MVA (Multi-Domain Vertical Alignment). Технология должна была служить компромиссом между быстродействием TN и качеством изображения S-IPS. Потому и реализация во многом схожа с IPS.

В этих матрицах кристаллы располагаются параллельно друг к другу и под углом 90° ко второму фильтру. Таким образом, свет попадает во второй фильтр с осью поляризации, направленной под углом 90° к плоскости поляризации фильтра, и поглощается. В результате мы получаем незасвеченный чёрный цвет на экране. Подавая напряжение на ячейку, мы поворачиваем кристаллы и получаем светящийся пиксель.

Недостатком первых матриц VA было то, что цвет резко изменялся при смене угла обзора по горизонтали. Для того, чтобы понять это явление, представьте себе, что кристаллы повернуты на 45 градусов и показывают светло-красный цвет. Теперь смещаемся в одну сторону. Угол обзора растёт, и мы получаем уже намного более насыщенный красный цвет. Смещаясь в другую сторону, мы видим, как цвет уходит в противоположную часть спектра и становится светло-красным. Поэтому и была разработана MVA. Суть её состоит в том, что поляризационные фильтры были значительно усложнены, а на стеклянную подложку стали наноситься не плоские электроды, а cвоеобразные треугольники.

Строение MVA

При отключённом токе кристаллы всегда выстраиваются перпендикулярно подложке, так что, с какой бы стороны мы ни смотрели, всегда будет чёрный. При включённом же токе, как всегда, кристаллы поворачиваются на нужный угол и поворачивают вектор поляризации света. Вот только угол этот – между плоскостью электрода и кристалла. Если мы смотрим под углом, мы всегда увидим только одну зону, кристаллы в которой расположены как раз в таком положении, чтобы не искажать цвет. Вторая зона видна не будет.

Нужный цвет под любым углом

Подобное решение значительно усложняет как фильтры-поляризаторы, так и сами панели, потому что каждую точку на экране нужно дублировать для двух зон.

Как и в S-IPS, у MVA недостатки обусловлены достоинствами. Налицо всё та же инерционность – время отклика выше, чем у TN. Впрочем, на данный момент отличие уже абсолютно некритично: значение достигло 8 мс. Контрастность и яркость намного лучше S-IPS, до 1000:1. Цветопередача матриц MVA считается компромиссной между TN и S-IPS: она не настолько хороша, чтобы применять её для серьёзной работы с полиграфией и дизайном, но намного превышает жутковатые показатели TN+film.

Компания Samsung не пожелала платить лицензионные отчисления Fujitsu и разработала PVA. Впрочем, технологии эти очень похожи, а отличия незначительны. Единственное существенное – большая контрастность, что только плюс. Поэтому довольно часто в характеристиках монитора в графе «тип матрицы» пишут MVA/PVA.

Сравнение типов ЖК-матриц

 

Параметры ЖК-мониторов

Несмотря на то, что время отклика ячейки – далеко не самый важный показатель, чаще всего при выборе монитора покупатель обращает внимание только на этот фактор. Собственно, именно поэтому TN+film и доминирует. Однако при выборе конкретной модели стоит обдуманно взвешивать все характеристики монитора.

Время отклика

Этот показатель означает минимальное время, за которое ячейка жидкокристаллической панели изменяет цвет. Существуют два способа измерения скорости матрицы: black to black, чёрный-белый-чёрный, и gray to gray, между градациями серого. Эти значения очень сильно различаются.

При изменении состояния ячейки между крайними положениями (чёрный-белый) на кристалл подаётся максимальное напряжение, поэтому он поворачивается с максимальной скоростью. Именно так получены значения в 8, 6, а иногда и 4 мс в характеристиках современных мониторов.

При смещении кристаллов между градациями серого на ячейку подаётся намного меньшее напряжение, потому что позиционировать их нужно точно для получения нужного оттенка. Поэтому и времени для этого затрачивается намного больше (для матриц 16 мс – до 27-28 мс).

Лишь недавно в конечных продуктах смогли воплотить достаточно логичный способ решения этой проблемы. На ячейку подаётся максимальное напряжение (или сбрасывается до нуля), а в нужный момент моментально выводится на нужное для удержания положения кристалла. Сложностью является чёткое управление напряжением с частотой, превышающей частоту развёртки. Кроме того, импульс нужно высчитывать с учётом начального положения кристаллов. Однако Samsung уже представила модели с технологией Digital Capacitance Compensation, дающей показатели 8-6 мс для матриц PVA.

Контрастность

Значение контрастности определяется по соотношению яркости матрицы в состоянии «чёрный» и «белый». Т.е. чем меньше засвечен чёрный цвет и чем выше яркость белого, тем выше контрастность. Этот показатель критичен для просмотра видео, изображений и, в принципе, для хорошего отображения любого изображения. Выглядит как, например, 250:1, т.е. яркость матрицы в «белом» состоянии – 250 кд/м 2, а в «чёрном» – 1 кд/м 2. Впрочем, такие значения возможны только в случае TN+film, для S-IPS среднее значение – 400:1, а для PVA – до 1000:1.

Впрочем, заявленным в характеристиках монитора значениям стоит верить только с натяжкой, потому что это значение замеряется дляматрицы, а не для монитора. И замеряется оно на специальном стенде, когда на матрицу подаётся строго стандартное напряжение, подсветка питается строго стандартным током и т.д.

Яркость

Измеряется в кд/м 2. Важна для работы с изображениями, для красочных игр и видео. Зависит от мощности лампы подсветки и, косвенно, от типа матрицы (помните недостатки S-IPS?).

Углы обзора

Обычно указываются значения 170°/170°, впрочем, для TN+film это значение – не больше чем декларация. Требованием при определении углов обзора является сохранение контрастности не ниже 10:1. При этом абсолютно безразлична цветопередача в таком положении, даже если цвета будут инвертированы. Также учитываем, что углы определяются в центре матрицы, а на углы мы, естественно, изначально смотрим под углом.

Цветопередача

До пересечения рубежа в 25 мс при переключении ячейки в порядке чёрный-белый-чёрный все матрицы TN отображали честный 24-битный цвет. Однако в гонке скоростей AU Optronics решила честную цветопередачу отбросить. Начиная с матриц со скоростью 16 мс, все TN+film обеспечивают только 262 тысячи оттенков (18 бит). Большее же количество оттенков обеспечивается двумя путями: либо перемешиванием точек с разными цветами (дизеринг), либо сменой цвета ячейки при каждом обновлении картинки (Frame Rate Control, FRC). Второй способ «честней», потому как человеческий глаз всё равно не успевает заметить смены цвета на каждом кадре. Подчеркиваем, все матрицы TN+film быстрее 16 мс - 18-битные, большинство матриц, произведённых по другим технологиям, поддерживают 24-битную цветопередачу. Исключением являются встречающиеся в некоторых мониторах PVA от Samsung, поэтому стоит быть осторожными при выборе. К сожалению, никакой системы в установке 18- или 24-битных PVA компанией Samsung не прослеживается.

Размер дисплея

Мониторы с диагональю, например, 19 и 21 дюйм практически идентичны по цене, вопрос о выборе в данном случае отпадает. Но помните, что монитор обычно находится прямо перед глазами у пользователя, поэтому читать, печатать и путешествовать по Интернету, глядя в огромный экран, будет некомфортно. Это ведь не телевизор, где его размер играет решающее значение. Оптимальным для монитора считается экран с диагональю 21-23 дюйма.

Разрешение экрана

Чем выше разрешение экрана монитора, тем лучше. Это HD 720p (1366 х 768), а также Full HD 1080p (1920х1080). Однако здесь важно помнить следующее. Во-первых, менять прописанное в конструкции LCD-монитора разрешение нежелательно, так как это искажает изображение. Во-вторых, чем выше разрешение, тем меньше по размеру будут элементы на вашем рабочем столе. Поэтому нет смысла покупать 19-дюймовый монитор с разрешением Full HD, так как работать на нём будет очень утомительно для глаз.

Соотношение сторон

Последнее, что можно отметить – это соотношение сторон дисплея. Сегодня широкоформатные экраны с соотношением 16:9 – почти норма. Это очень удобно для просмотра фильмов, но вот для интернет-серфинга, а тем более для работы в текстовых редакторах такое соотношение только мешает. Работать с текстами, графикой лучше на «квадратных» мониторах с соотношением сторон 5:4, 4:3, однако в продаже встретить их уже можно крайне редко. Теперь это, скорее, профессиональные модели для архитекторов и дизайнеров.

Соотношения сторон мониторов

Некоторым компромиссом в этом смысле можно считать мониторы с экранами 16:10, сделанными специально для того, чтобы облегчить работу с браузерами и текстовыми редакторами простым пользователям. Также в продаже встречаются и совсем экзотические модели мониторов с экранами 21:9, как говорится, на любителя.

Перспективы

Эволюция жидкокристаллических матриц не остановилась. При увеличении диагонали возникают свои сложности, например, размещение огромного количества транзисторов на стеклянной панели. Подсчитаем: стандартное разрешение для 15” дисплея – 1024х768 пикселей. Т.е. на экране размещены 786 432 точки. Каждая точка образуется 3 пикселями разных цветов. Таким образом, на панели нужно разместить около 2,35 млн транзисторов.

Получение такой плотности на стекле – довольно серьёзная проблема. Поэтому до недавнего времени тонкоплёночные транзисторы формировались на аморфном кремнии. Однако такие транзисторы ограничены по полезной площади и требуют достаточно высоких значений напряжения. Побороть эту проблему можно, используя кристаллический кремний для создания транзисторов.

Для осаждения кристаллического кремния необходимы высокие температуры (около 900°C). Однако при такой температуре расплавится стекло, на которое и нужно осадить кремний. Поэтому создали несколько технологий, с помощью которых можно осадить молекулы кремния при сравнительно низкой температуре. Самый распространённый метод – лазерный отжиг. Нанесённый на стеклянную подложку аморфный кремний расплавляется эксимерным лазером, а затем кристаллизируется при температуре около 300°C. Общее название технологии – Low-Temperature PolySilicon ( LTPS), низкотемпературный поликристаллический кремний.

На стеклянной подложке создаётся слой из LTPS, в котором формируются прозрачные транзисторы из окисла индия. Благодаря тому, что подвижность электронов в кристаллическом кремнии равна 200 см 2/В∙с, а в аморфном – всего 0.5 см 2/В∙с, можно уменьшить размер самого транзистора. Более того, раз кремний кристаллический, почему бы и логику драйвера панели не разместить в нём же? Так получаются панели System on Panel, значительно более лёгкие, чем традиционные, и более простые для интеграции в монитор (количество контактов уменьшено с 4000 до 200). Все эти преимущества значительно снижают потребление панелью электричества.

Впрочем, до повсеместного внедрения LTPS должно пройти ещё довольно много времени. Причина - всё та же дороговизна технологии и сложность производства. К тому же для производства матриц для настольных дисплеев LTPS не нужен. Однако популяризации LTPS косвенно послужит постепенное ужесточение требований к энергопотреблению матриц со стороны организаций Standard Panels Working Group и Mobile PC Extended Battery Life Working Group.

 

 



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.