Сделай Сам Свою Работу на 5

Компоненты молекулы ДНК и соединяющие их химические связи





Структура и поведение ДНК

Генетическая информация у всех клеток закодирована в виде последовательности нуклеотидов в дезоксирибонуклеиновой кислоте (ДНК). Первый этап реализации этой информации состоит в образовании родственной ДНК молекулы—рибонуклеиновой кислоты (РНК), которая в свою очередь участвует в синтезе специфических белков. Фенотипические признаки любого организма в конечном счете проявляются в разнообразии и количестве белков, кодируемых ДНК. Информационная связь между молекулами генетического аппарата — ДНК, РНК и белками—представлена на рисунке:

 

 

 

Чтобы генетическая информация могла передаваться от одного поколения клеток к другому, должна происходить репликация ДНК — процесс, в ходе которого родительские молекулы ДНК удваиваются и затем распределяются между потомками. Этот процесс должен осуществляться с большой точностью, а повреждения или случайные ошибки, возникшие в ДНК во время циклов репликации или между ними, необходимо исправить прежде, чем они попадут в геномы потомков. Кроме того, для формирования фенотипа генетическая информация должна экспрессироваться. У всех клеточных организмов экспрессия генов включает копирование ДНК с образованием РНК (транскрипцию) и последующую трансляцию РНК в белки. Как будет показано в гл. 3, при транскрипции образуется несколько типов РНК. Одни из них, матричные РНК (мРНК), кодируют белки, другие участвуют в различных процессах, необходимых для сборки полноценного белка. ДНК не только кодирует ферментативный аппарат клетки; она участвует в процессах репарации, а при определенных условиях в ней могут происходить перестройки. Репликация, репарация и перестройки ДНК — ключевые процессы, с помощью которых организмы поддерживают свойственный им фенотип и изменяют его.



Ключевым моментом в передаче генетической информации между нуклеиновыми кислотами, будь то репликация или транскрипция является то, что молекула нуклеиновой кислоты используется в качестве матрицы в направленной сборке идентичных или родственных структур. Насколько известно, информация, хранящаяся в белках, не используется для сборки соответствующих нуклеиновых кислот, т.е. обратная трансляция не обнаружена. Тем не менее белки играют ключевую роль в процессах передачи информации как между нуклеиновыми кислотами, так и от нуклеиновых кислот к белкам.



Структура и поведение ДНК

Компоненты молекулы ДНК и соединяющие их химические связи

С помощью химических и физических методов установлено, что ДНК — это полимер, состоящий из четырех разных, но родственных мономеров. Каждый мономер — нуклеотид — содержит одно из четырех гетероциклических азотистых оснований: аденин (А), гуанин (G), цитозин (С) или тимин (Т), связанное с дезоксирибозофосфатом:

 

Дезоксирибонуклеотиды. Цифрами обозначены положения атомов в гетероциклических кольцах пуринов (аденин и гуанин) и пиримидинов (тимин и цитозин) и углеродных атомов в дезоксирибозе.

 

Длинные полинуклеотидные цепи образуются путем соединения дезоксирибозных остатков соседних нуклеотидов с помощью фосфодиэфирных связей:


Рисунок: связь между соседними дезоксирибонуклеотидами в полинуклеотидной цепи. В правом нижнем углу рисунка показаны некоторые способы схематического изображения дезоксирибонуклеотидной последовательности. Нуклеотидную последовательность принято изображать слева направо, от 5'- к З'-концу.
Таблица: частоты встречаемости некоторых ближайших соседей в различных ДНК

Каждый фосфат соединяет гидроксильную группу (ОН) при З'-углеродном атоме дезоксирибозы одного нуклеотида с ОН-группой при 5'-углеродном атоме дезоксирибозы соседнего нуклеотида. Частота встречаемости в определенном соседстве любых двух оснований в ДНК бактерий, бактериофагов и дрожжей зависит от количественного содержания этих оснований в ДНК (см. таблицу выше). Частота встречаемости 5'-CG-3' и 5'-GC-3' в ДНК прокариот почти одинакова и близка к случайной; то же самое можно сказать и о динуклеотидах 5'-GA-3' и 5'-AG-3'. Однако в ДНК животных, вирусов животных и растений частоты встречаемости 5'-CG-3' составляют от 1/2 до 1/5 частот 5'-GC-3'. Таким образом, последовательность 5'-CG-3' встречается в ДНК высших эукариот довольно редко; это связано со способностью данного динуклеотида служить мишенью при метилировании и с его ролью в регуляции экспрессии генов.



После окончания цикла синтеза ДНК некоторые пуриновые и пиримидиновые основания могут подвергаться химической модификации. В результате в некоторых ДНК содержатся 5-метилцитозин, 5-гидроксиметилцитозин, 5-гидроксиметилурацил и N-метиладенин:

 

Структурные формулы модифицированных пуринов и
пиримидинов, обнаруженных в ДНК

В ДНК некоторых бактериофагов к гидроксиметильной группе гидроксиметилцитозина присоединены с помощью гликозидной связи моно- или дисахариды. ДНК большинства низших эукариот и беспозвоночных содержат относительно мало 5-метилцитозина и N6-метиладенина. Однако у позвоночных метилирование оснований — частое явление, причем наиболее распространен 5-метилцитозин. Показано, что более 95% метильных групп в ДНК позвоночных содержится в остатках цитозина редко встречающихся CG-динуклеотидов и более 50% таких динуклеотидов метилировано. Существуют четкие указания на то, что степень метилирования некоторых CG-содержащих последовательностей является важным фактором регуляции экспрессии определенных генов. У растений 5-метилцитозин можно обнаружить в динуклеотидах CG
и тринуклеотидах CNG (N – C, А или Т).

Спиральная структура ДНК

С помощью физико-химических, электронно-микроскопических и рентгеноструктурных методов показано, что большинство молекул ДНК представляют собой протяженные, гибкие, нитевидные структуры. Этими же методами установлено, что молекула ДНК имеет почти постоянный диаметр и состоит из регулярно расположенных повторяющихся звеньев, причем ее структура не зависит от нуклеотидного состава. Таким образом, в отличие от белков, двух- и трехмерная структура которых обязательно зависит от состава и порядка расположения аминокислот, молекула ДНК в обычных условиях при любом нуклеотидном составе и порядке расположения четырех нуклеотидов представляет собой абсолютно регулярную практически идентичную по всей длине структуру. Такие в какой-то степени парадоксальные химические и физические свойства ДНК порождаются особенностями ее структуры.

Молекула ДНК обычно находится в форме двойной спирали, образуемой двумя полинуклеотидными цепями, обвивающимися одна вокруг другой.

Два дезоксирибозофосфатных остова, расположенные по периферии молекулы, имеют антипараллельную ориентацию:

 

 

Схематическое и пространственное изображение В-формы двойной спирали ДНК. Видны большой и малый желобки.
Указаны расстояние между ближайшими парами оснований и шаг спирали.

В наиболее часто встречающейся структурной форме пуриновые и пиримидиновые основания в каждой цепи уложены в стопки с интервалом 0,34 нм и направлены внутрь спирали; плоскости колец примерно перпендикулярны оптической оси спирали. Спираль делает полный оборот каждые 3,4 нм, т.е. через каждые 10 оснований. На наружной ее поверхности имеются два желобка — большой и малый.

Азотистые основания четырех нуклеотидов ДНК не находятся между собой в количественном соотношении 1:1, как это представлено на рис. 1.3. Напротив, молярные отношения двух пуринов, А и G, и двух пиримидинов, Т и G, различны для ДНК разных организмов. В то же время соотношение между пуринами и пиримидинами постоянно и не зависит от источника ДНК, а именно: содержание пуриновых нуклеотидов (A + G) всегда равно содержанию пиримидиновых нуклеотидов (Т + G); число А равно числу Т, и аналогично для G и С. Эти факты и легли в основу предположения, что пуриновые и пиримидиновые нуклеотиды в ДНК спарены, а двойная спираль стабилизируется с помощью водородных связей между пуринами одной цепи ДНК и пиримидинами другой.

Два указанных типа пар оснований, AT и GC, обычно называемых комплементарными парами, преобладают в большинстве ДНК:

 

Водородные связи между комплементарными основаниями в ДНК. Видно, что геометрия двух типов пар оснований практически одинакова

 

В АТ-паре основания соединены двумя водородными связями: одна из них образуется между амино-и кето-группами, а другая — между двумя атомами азота пурина и пиримидина соответственно. В GC-паре имеются три водородные связи: две из них образуются между амино- и кето-группами соответствующих оснований, а третья — между атомами азота. Образование пар между двумя пуринами, двумя пиримидинами или некомплементарными основаниями (А + С или G + T) стерически затруднено, поскольку при этом не могут образовываться подходящие водородные связи и, следовательно, нарушается геометрия спирали. Модифицированные пурины и пиримидины, с небольшой частотой встречающиеся в ДНК (рис. 1.4), образуют такие же водородные связи, что и их немодифицированные аналоги; тем самым правило спаривания не нарушается. Согласно этим правилам, последовательность оснований в одной цепи определяет их последовательность в другой. Комплементарность последовательности оснований в двух полинуклеотидных цепях — ключевое свойство ДНК.
Дополнительная стабилизация двойной спирали обеспечивается межплоскостными взаимодействиями ароматических колец соседних оснований. Размеры комплементарных пар оснований практически одинаковы; примерно одинаковы также угол и направление связи дезоксирибоза-основание. Расстояние между соседними основаниями равно 0,34 нм, а угол, на который они повернуты друг относительно друга,— 36°. Из всех этих данных следует, что диаметр спирали постоянен, а число пар оснований на виток спирали равно 10. Точные данные о расположении, ориентации в пространстве и размерах различных составляющих ДНК были получены методом рентгеноструктурного анализа волокон ДНК.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.