Сделай Сам Свою Работу на 5

Методы микроскопии в микробиологии. Их практическое применение

Размеры микробов, имеющих клеточное строение, составляют 0,2–20 мкм и они легко обнаруживаются в иммерсионном микроскопе. Вирусы во много раз меньше. Диаметр самых больших из них, например вируса натуральной оспы, около 300 нм, а у самых мелких составляет 20–30 нм. Ввиду этого для выявления вирусов используются электронные микроскопы.

В микробиологических исследованиях применяют световые и электронные микроскопы; методы оптической и электронной микроскопии.

Оптический микроскоп.Наиболее важной оптической частью микроскопа являются объективы, которые делятся на сухие и иммерсионные.

Сухие объективыс относительно большим фокусным расстоянием и слабым увеличением применяются для изучения микроорганизмов, имеющих крупные размеры (более 10–20 мкм),иммерсионные(лат. immersio – погружение) с фокусным расстоянием – при исследовании более мелких микробов.

При микроскопии иммерсионным объективом х90обязательным условием является его погружение в кедровое, персиковое или в вазелиновое масло, показатели преломления света у которых близки предметному стеклу, на котором делают препараты. В этом случае падающий на препарат пучок света не рассеивается и, не меняя направления, попадает в иммерсионный объектив. Разрешающая способность иммерсионного микроскопа находится в пределах 0,2 мкм, а максимальное увеличение объекта достигает 1350.

При использовании иммерсионного объектива вначале центрируют оптическую часть микроскопа. Затем поднимают конденсор до уровня предметного столика, открывают диафрагму, устанавливают объектив малого увеличения и при помощи плоского зеркала освещают поле зрения.

На предметное стекло с окрашенным препаратом наносят каплю масла, в которую под контролем глаза осторожно погружают объектив, затем, поднимая тубус, смотрят в окуляр и вначале макро–, а потом микровинтом устанавливают четкое изображение объекта. По окончании работы удаляют салфеткой масло с фронтальной линзы объектива.

Микроскопия в темном поле зрения проводится при боковом освещении и обычно применяется при изучении подвижности бактерий или обнаружении патогенных спирохет, поперечник которых может быть меньше 0,2 мкм. Чтобы получить яркое боковое освещение, обычный конденсор заменяют специальным параболоидом–конденсором, в котором центральная часть нижней линзы затемнена, а боковая поверхность зеркальная. Этот конденсор задерживает центральную часть параллельного пучка лучей, образуя темное поле зрения.



Краевые лучи проходят через кольцевую щель, попадают на боковую зеркальную поверхность конденсора, отражаются от нее и концентрируются в его фокусе. Если на пути луча нет каких–либо частиц, он преломляется, падая на боковую зеркальную поверхность, отражается от нее и выходит из конденсора.

Когда луч встречает на своем пути микробы, свет отражается от них и попадает в объектив – клетки ярко светятся. Так как для бокового освещения необходим параллельный пучок света, применяется только плоское зеркало микроскопа. Обычно исследование в темном поле зрения проводится под сухой системой. При этом небольшую каплю материала помещают на предметное стекло и накрывают покровным, не допуская образования пузырьков воздуха.

Фазово–контрастная и аноптральная микроскопияоснованы на том, что оптическая длина пути света в любом веществе зависит от показателя преломления. Это свойство используют с целью увеличить контрастность изображения прозрачных объектов, какими являются микробы, т. е. для изучения деталей их внутреннего строения. Световые волны, проходя через оптически более плотные участки объекта, отстают по фазе от световых волн, не проходящих через них.

При этом интенсивность света не меняется, а только изменяется фаза колебания, не улавливаемая глазом и фотопластинкой. Для повышения контрастности изображения фазовые колебания при помощи специальной оптической системы превращаются в амплитудные, хорошо улавливаемые глазом. Препараты в световом поле зрения становятся более контрастными – положительный контраст; при отрицательном фазовом контрасте на темном фоне виден светлый объект. Вокруг изображений нередко возникает ореол.

Большей четкости изображения малоконтрастных живых микробов (даже некоторых вирусов) достигают в аноптральном микроскопе. Одной из важнейших его деталей является линза объектива, расположенная вблизи «выходного» зрачка, на которую нанесен слой копоти или меди, поглощающий не менее 10 % света. Благодаря этому фон поля зрения приобретает коричневый цвет, микроскопируемые объекты имеют различные оттенки – от белого до золотисто–коричневого.

Люминесцентная микроскопияоснована на способности некоторых клеток и красителей светиться при попадании на них ультрафиолетовых и других коротковолновых лучей света. Люминесцентные микроскопы представляют собой обычные световые микроскопы, снабженные ярким источником света и набором светофильтров, которые выделяют коротковолновую часть спектра, возбуждающую люминесценцию. Между зеркалом микроскопа и источником света устанавливают сине–фиолетовый светофильтр (УФС–3, ФС–1 и пр.). На окуляр надевают желтый светофильтр (ЖС–3 или ЖС–18).

Различают собственную (первичную) флюоресценцию и наведенную (вторичную).

Так как большая часть микробов не обладает собственной флюоресценцией, они обрабатываются красителями, способными флюоресцировать (вторичная люминесценция). В качестве флюорохромов используют аурамин (для обработки микобактерий туберкулеза), акридин желтый (гонококки), корифосфин (коринебактерии дифтерии), флюоресцеинизотиоцианат (для мечения антител).

Люминесцентная микроскопия отличается рядом преимуществ: дает цветное изображение и значительную контрастность; позволяет обнаружить живые и погибшие микроорганизмы, прозрачные и непрозрачные объекты; установить локализацию бактерий, вирусов и их антигенов в пораженных клетках организма.

Электронный микроскоп.

В электронном микроскопе вместо света используется поток электронов в безвоздушной среде, на пути которых находится анод. Источником электронов является электронная пушка (вольфрамовая нить, разогреваемая до 2500–2900 °С). Оптические линзы заменены электромагнитами.

Между вольфрамовой нитью и анодом возникает электрическое поле в 30 000–50 000 Вт, что сообщает электронам большую скорость, и они, проходя через отверстие анода, попадают в первую электромагнитную линзу (конденсор). Электронные лучи на выходе из конденсора собираются в плоскости исследуемого объекта. Они отклоняются под разными углами за счет различной толщины и плотности препарата и попадают в объективную электромагнитную линзу, снабженную диафрагмой.

 

Электроны, незначительно отклонившиеся при встрече с объектом, проходят через диафрагму, а отклонившиеся под большим углом – задерживаются, благодаря чему обеспечивается контрастность изображения. Линза объектива дает промежуточное увеличение изображения, которое наблюдается через смотровое окно. Проекционная линза может увеличивать изображение во много раз. Это изображение принимается на флюоресцирующий экран и фотографируется. Разрешающая способность электронных микроскопов равна 1,0 –0,14нм

 

 

Простые и сложные методы окраски микроорганизмов. Способы окраски спор, жгутиков, капсул, включений.

Методы окраски.

Окраску мазка производят простыми или сложными методами.

Простые заключаются в окраске препарата одним красителем;

Сложные методы (по Граму, Цилю — Нильсену и др.) включают последовательное использование нескольких красителей и имеют дифференциально-диагностическое значение.

 

Отношение микроорганизмов к красителям расценивают как тинкториальные свойства. Существуют специальные методы окраски, которые используют для выявления жгутиков, клеточной стенки, нуклеоида и разных цитоплазматических включений.

При простых методах мазок окрашивают каким-либо одним красителем, используя красители анилинового ряда (основные или кислые).

Если красящий ион (хромофор) — катион, то краситель обладает основными свойствами, если хромофор - анион, то краситель имеет кислые свойства. Кислые красители — эритрозин, кислый фуксин, эозин.

Основные красители — генциановый фиолетовый, кристаллический фиолетовый, метиленовый синий, основной фуксин. Преимущественно для окраски микроорганизмов используют основные красители, которые более интенсивно связываются кислыми компонентами клетки.

Из сухих красителей, продающихся в виде порошков, готовят насыщенные спиртовые растворы, а из них — водно-спиртовые, которые и служат для окрашивания микробных клеток. Микроорганизмы окрашивают, наливая краситель на поверхность мазка на определенное время.

Окраску основным фуксином ведут в течение 2 мин, метиленовым синим — 5—7 мин. Затем мазок промывают водой до тех пор, пока стекающие струи воды не станут бесцветными, высушивают осторожным промоканием фильтровальной бумагой и микроскопируют в иммерсионной системе. Если мазок правильно окрашен и промыт, то поле зрения совершенно прозрачно, а клетки интенсивно окрашены.

Сложные методы окраски применяют для изучения структуры клетки и дифференциации микроорганизмов. Окрашенные мазки микроскопируют в иммерсионной системе. Последовательно нанести на препарат определенные красители, различающиеся по химическому составу и цвету, протравы, спирты, кислоту и др.

Существуют несколько основных окрасок: по Граму, по Цилю-Нельсону, по Ауески, Нейссера, Бури-Гинса.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.