Сделай Сам Свою Работу на 5

Лабораторная работа №6 Работа со сканерами





 

Цель работы:изучить устройство скнера, интерфейс связи с ПЭВМ, функции сканера, подключение и настройку сканера к работе.

 

Содержание работы:

6.1. Изучение устройств сканера.

6.1.1. Матрица сканера.

6.1.2. Корпус сканера.

6.1.3 Блок управления.

6.1.4 Источник света сканера.

6.1.5 Работа АЦП.

6.1.6 Процессор сканера.

6.1.7 Контроллер интерфейса.

6.1.8 Протяжный механизм сканера.

6.1.9 Блок питания сканера.

6.2. Задание.

6.3. Контрольные вопросы.

6.4. Содержание отчета.

6.5. Информационные источники.

 

6.1. Изучение устройств сканера

 

6.1.1. Матрица сканера

 

Именно матрица является важнейшей частью любого сканера. Матрица трансформирует изменения цвета и яркости принимаемого светового потока в аналоговые электрические сигналы, которые будут понятны лишь единственному ее электронному другу – аналого-цифровому преобразователю (АЦП). Только он понимает матрицу, ведь никакие процессоры или контроллеры не разберут ее аналоговые сигналы без предварительного толкования преобразователем. Световой поток, падая на поверхность матрици, буквально "вышибает" электроны из ее чувствительных ячеек. И чем ярче свет, тем больше электронов окажется в накопителях матрицы, тем больше будет их сила, когда они непрерывным потоком ринутся к выходу. Однако сила тока электронов настолько несоизмеримо мала, что вряд ли их "услышит" даже самый чувствительный АЦП. Именно поэтому на выходе из матрицы их ждет усилитель, который сравним с огромным рупором, превращающим, образно говоря, даже комариный писк в вой громогласной сирены. Усиленный сигнал (пока еще аналоговый) "взвесит" преобразователь, и присвоит каждому электрону цифровое значение, согласно его силе тока. Дальше электроны будут представлять собой цифровую информацию, обработкой которой займутся другие специалисты. Работа над воссозданием изображения больше не требует помощи матрицы.



Большинство современных сканеров для дома и офиса базируются на матрицах двух типов: на CCD (Charge Coupled Device) или на CIS (Contact Image Sensor). Сей факт порождает в умах пользователей два вопроса: в чем разница и что лучше? Если разница заметна даже невооруженным взглядом – корпус CIS-сканера плоский, в сравнении с аналогичным CCD-аппаратом (его высота обычно составляет порядка 40-50 мм), то ответить на второй вопрос гораздо сложнее.



Для начала рассмотрим основные достоинства и недостатки этих двух классов сканеров.

Рис. 6.1 – Достоинства и недостатки CCD- и CIS – сканеров

 

Сканер – это устройство для перевода изображения на бумажном или ином носителе в электронный вид. Широко используются CCD и CIS – сканеры.

CCD-сканер обладает большей глубиной резкости, нежели его CIS-собрат. Достигается это за счет применения в его конструкции объектива и системы зеркал.

Рис. 6.2 – Объектив и систкмы зеркал

Сканеры с CCD-матрицей распространены гораздо больше, чем CIS-аппараты. Объяснить это можно тем, что сканеры в большинстве случаев приобретаются не только для оцифровки листовых текстовых документов, но и для сканирования фотографий и цветных изображений. В этом плане, электронный вид изображения с наиболее точной и достоверной цветопередачей, лучше по светочувствительности CCD-сканер гораздо строже передает цветовые оттенки, света и полутона, нежели CIS-сканер. Погрешность разброса уровней цветовых оттенков, различаемых стандартными CCD-сканерами составляет порядка ±20%, тогда как у CIS-аппаратов эта погрешность составляет уже ±40%.

Рис. 6.3 - Схематическое представление CIS-сенсора

 

CIS-матрица состоит из светодиодной линейки, которая освещает поверхность сканируемого оригинала, самофокусирующихся микролинз и непосредственно самих сенсоров. Конструкция матрицы очень компактна, поэтому, сканер, в котором используется контактный сенсор, всегда будет намного тоньше CCD-сканера. К тому же, такие аппараты имеют низкое энергопотребление; они практически нечувствительны к механическим воздействиям. Однако CIS-сканеры несколько ограничены в применении: аппараты, как правило, не приспособлены к работе со слайд-модулями и автоподатчиками документов.



Из-за особенностей технологии CIS-матрица обладает сравнительно небольшой глубиной резкости. Для сравнения, у CCD-сканеров глубина резкости составляет ±30 мм, у CIS – ±3 мм. Поэтому при сканировании толстой книги, получаем скан с размытой полосой посередине, т.е. в том месте, где оригинал не соприкасается со стеклом. У CCD-аппарата вся картина будет резкой, поскольку в его конструкции есть система зеркал и фокусирующая линза. В свою очередь, именно достаточно громоздкая оптическая система и не позволяет CCD-сканеру достичь столь же компактных размеров, как у CIS-собрата. Однако с другой стороны, именно оптика обеспечивает очевидный выигрыш в качестве сканирования.

В плане разрешающей способности CIS-сканеры также слабее CCD - сканера. Уже сейчас некоторые модели CCD-сканеров для дома и офиса обладают оптическим разрешением порядка 3200 dpi, тогда как у CIS-аппаратов оптическое разрешение ограничено, пока что 1200 dpi. Сканеры с CIS-матрицей нашли свое применение там, где требуется оцифровывать не книги, а листовые оригиналы. Тот факт, что эти сканеры целиком получают питание по шине USB и не нуждаются в дополнительном источнике питания, пришелся как нельзя кстати владельцам портативных компьютеров. Оцифровать оригинал и перевести его в текстовый файл они могут где бы то ни было, не завязываясь с близостью электрических сетей, что позволяет закрыть глаза на ряд недостатков контактного сенсора.

Матрица CCD - сканера представляет собой "большую микросхему" со стеклянным окошком (рис. 6.4).

Рис. 6.4 - CCD-матрица сканера

 

Именно сюда и фокусируется отраженный от оригинала свет. Матрица не прекращает работать все то время, пока лафет со сканирующей кареткой, приводимый шаговым электродвигателем, совершает путь от начала планшета, до его конца. Общая дистанция движения лафета по направлению "Y" называется частотой сэмплирования или механическим разрешением сканера. За один шаг матрица целиком захватывает горизонтальную линию планшета, которая называется линией растра. По истечении времени, достаточного для обработки одной такой линии, лафет сканирующего блока перемещается на небольшой шаг, и наступает очередь для сканирования следующей линии, и т.д.

Рис. 6.5 - Вид сбоку на CCD-матрицу

 

На виде сбоку (рис. 6.5) можно заметить два обычных винта, с помощью которых производится точная юстировка матрицы, чтобы падающий на нее отраженный свет от зеркал ложился бы равномерно по всей ее поверхности. В случае перекоса одного из элементов оптической системы воссозданное компьютером изображение окажется "полосатым".

Рис. 6.6 - Увеличенное изображение части CCD-матрицы

 

На увеличенном рисунке CCD-матрицы видно, что CCD-матрица оснащена собственным RGB-фильтром. Именно он и представляет собой главный элемент системы разделения цветов. Обычно, многие обозреватели ограничиваются стандартной формулировкой: "стандартный планшетный сканер использует источник света, систему разделения цветов и прибор с зарядовой связью (CCD) для сбора оптической информации о сканируемом объекте". На самом деле, свет можно разделить на его цветовые составляющие, а затем сфокусировать на фильтрах матрицы. Столь же немаловажным элементом системы разделения цветов является объектив сканера.

Рис. 6.7 - Объектив сканера

6.1.2. Корпус сканера

 

Корпус сканера должен обладать достаточной жесткостью, чтобы исключить возможные перекосы конструкции. Безусловно, лучше всего, если основа сканера представляет собой металлическое шасси. Однако корпуса большинства выпускаемых сегодня сканеров для дома и офиса, в целях снижения стоимости, полностью сделаны из пластмассы. В этом случае, необходимую прочность конструкции придают ребра жесткости.

Рис. 6.8 - Расположение основных функциональных узлов сканера

 

Немаловажным элементом корпуса является транспортный фиксатор, наличие которого призвано уберечь сканирующую каретку от повреждений при транспортировке сканера. Необходимо помнить, что перед включением любого сканера, оснащенного таким фиксатором, нужно осуществить его разблокировку. В противном случае, можно повредить механизмы аппарата. Так как оптическая система сканера не терпит пыли, поэтому корпус аппарата должен быть герметичным, без каких-либо щелей (даже технологических).

Такое свойство аппарата как возможность отделения крышки планшета особенно полезно при сканировании таких оригиналов, как толстые книги или журналы.

Края планшета должны иметь пологий спуск – это облегчает задачу по быстрому извлечению оригинала со стекла. Кроме того, между стеклом и планшетом не должно быть никакого зазора, который препятствовал бы извлечению оригинала.

 

6.1.3 Блок управления

 

Все сканеры управляются с персонального компьютера, к которому они подключены, а необходимые настройки перед сканированием задаются в пользовательском окне управляющей программы. По этой причине, сканерам для дома и офиса совсем не обязательно иметь собственный блок управления. Однако многие производители устанавливают (обычно на лицевую панель) несколько кнопок "быстрого сканирования".

Рис. 6.9 - Кнопки быстрого сканирования

 

На рис. 6.9 видно, что каждой кнопке соответствует определенный значок. Типовые функции быстрого старта обычно подразумевают запуск стандартной операции сканирования, с выводом на принтер, с последующей отправкой по электронной почте, по факсу и т.п. Понятно, что для той или иной кнопки заданы конкретные параметры качества сканирования. Впрочем, нажатие на ту или иную кнопку сначала приводит к запуску на компьютере приложения (если таковых несколько), отвечающего за вызываемую операцию.

6.1.4 Источник света сканера

 

Абсолютно в каждом сканере используется свой осветитель. Так называется небольшой и мощный модуль, в задачу которого входит включение и выключение лампы сканера (или того, что эту лампу заменяет). В CIS-сканерах в качестве источников света применяют светодиодную линейку, за счет чего данный класс аппаратов потребляет так мало энергии.

В CCD-сканерах оригиналы стандартно освещает люминесцентная лампа с холодным катодом. Ее свет в тысячи раз ярче светодиодов. Но для того чтобы вызвать свечение газа внутри лампы нужно подать на ее вход очень высокое напряжение. Его вырабатывает отдельный блок, называемый инвертором.

Рис. 6.10 - Высоковольтный модуль необходим для питания лампы

 

Инвертор преобразует постоянный ток в переменный, а затем повышает напряжение с 5 Волть до нескольких киловольт.

Вообще различают три главных вида ламп, использующихся в сканерах:

- ксеноновая газоразрядная лампа (Xenon Gas Discharge);

- флуоресцентная лампа с горячим катодом (Hot Cathode Fluorescent);

- флуоресцентная лампа с холодным катодом (Cold Cathode Fluorescent)

В сканерах для дома и офиса по ряду причин используются лишь лампы с холодным катодом.

Рис. 6.11 - Лампа с холодным катодом

 

Лампа сканера закреплена на пластмассовом шасси сканирующей каретки непосредственно над отражателем. Сам отражатель имеет форму рефлектора в форме увеличительного зеркала. Свет от него усиливается, чтобы ярко осветить объект на планшете. Отразившись от оригинала на стекле, свет проходит сквозь щель шасси и принимается первым, самым длинным зеркалом оптической системы.

Среди очевидных преимуществ лампы с холодным катодом можно отметить большой срок службы, который составляет 5 000 – 10 000 часов. По этой причине, кстати, в некоторых сканерах не используются отключение лампы после завершения операции сканирования. Кроме этого, лампы не требуют какого-то дополнительного охлаждения и очень дешевы при производстве. Из недостатков – очень медленное включение. Типовое время разогрева лампы от 30 секунд до нескольких минут.

Лампа оказывает важное воздействие на результат сканирования. Даже при небольшом уходе характеристик источника света изменяется и падающий на приемную матрицу отраженный от оригинала световой поток. Поэтому и нужно столь длительное время разогрева лампы перед сканированием. Некоторые драйверы позволяют уменьшить время разогрева, если качество оцифровки не так важно (например, при сканировании текстовой информации). Чтобы как-то скомпенсировать уход характеристик лампы (а это неизбежно происходит при длительной эксплуатации аппарата), сканеры автоматически выполняют процедуру самокалибровки по черно-белой мишени, располагающейся внутри корпуса.

6.1.5 Работа АЦП

 

Аналого-цифровой преобразователь, обеспечивает перевод аналоговых сигналов в цифровую форму..

Всегда лучше выбирать сканер, у которого разрядность больше. Различия между результатами работы 36-ти и 42-х-битных сканеров практически незаметны (человеческий глаз способен различить примерно 24 бита цветовых оттенков, т.е. около 16,7 млн.). В нашем случае, разрядность преобразователя и глубина цвета – это одно и то же. Чем больше разрядность преобразователя, тем достовернее сканер может передать цвет каждой точки изображения. Соответственно, тем больше изображение будет походить на оригинал.

 

6.1.6 Процессор сканера

 

Современные сканеры оснащают специализированными процессорами. В число задач такого процессора входит согласование действий всех цепей и узлов, а также формирование данных об изображении для передачи персональному компьютеру. В некоторых моделях сканеров на процессор возлагаются также функции контроллера интерфейса.

Список программных инструкций для процессора хранится в микросхеме постоянной памяти. Данные в эту микросхему записываются производителем сканера на этапе производства. Содержимое микросхемы называется "микропрограммой" или "firmware". У некоторых профессиональных сканеров предусмотрена возможность ее обновления.

Помимо микросхемы постоянной памяти в сканерах используется и оперативная память, играющая роль буфера (ее типовые значения – 1 или 2 Мбайт). Сюда направляется сканируемая информация, которая практически сразу передается на ПК. После отправки содержимого из памяти персональному компьютеру, процессор обнуляет буфер для формирования новой посылки. Инструкции для процессора также заносятся в ячейки оперативной памяти, но уже самого процессора. Организация его памяти построена по принципу конвейера, т.е. после выполнения инструкции, стоящей в очереди первой, ее место занимает вторая, а место последней – новая инструкция.

 

6.1.7 Контроллер интерфейса

 

За обмен информацией и командами между сканером и компьютером отвечает контроллер интерфейса. Данная микросхема может отсутствовать в том случае, если процессор располагает интегрированным модулем контроллера. В настоящее время SOHO-сканеры ограничиваются интерфейсами USB, FireWire и SCSI. Совершенно очевидно, что в аппаратах с разными интерфейсами установлены такие же разные контроллеры. Между собой они не совместимы.

Рис. 6.12 - Сочетание SCSI- и USB-портов в интерфейсной плате

 

SCSI (Small Computer Systems Interface). Сканеры с интерфейсом SCSI были наиболее распространены несколько лет назад. Надо признать, что эра SCSI-сканеров подходит (или уже подошла) к концу. Основная причина – появление высокоскоростных интерфейсов USB и FireWire, не требующих ни особой деликатности при подключении, ни дополнительных адаптеров. Среди достоинств SCSI-интерфейса можно выделить его высокую пропускную способность, а также возможность подключения до семи различных устройств на одну шину. Из основных недостатков SCSI – высокую стоимость организации интерфейса и необходимости задействования дополнительного контроллера.

USB (Universal Serial Bus). Интерфейс USB получил самое широкое распространение благодаря его интеграции во все современные системные платы в качестве основного разъема для периферийных устройств. Сегодня абсолютное большинство сканеров для дома выпускается именно с USB-интерфейсом. Кроме того, группа CIS-сканеров получает необходимое питание по USB-порту.

FireWire (IEEE1394). При выборе типа подключения, FireWire-интерфейс является более предпочтительным. FireWire представляет собой последовательный высокоскоростной интерфейс ввода/вывода, отличаясь от USB тем, что для обеспечения соединения он не требует управляющего контроллера. Организация его работы выполнена по схеме peer-to-peer. Собственно за счет этого и достигается более низкая (в сравнении с USB) загрузка центрального процессора. В скором времени свет увидят периферийные устройства с новой модификацией этого интерфейса – FireWire 800 (IEEE1394b). Именно тогда он станет самым скоростным среди периферийных стандартов, которые когда-либо были разработаны.

 

6.1.8 Протяжный механизм сканера

 

Основной подвижный модуль сканера – его сканирующая каретка. В нее входят оптический блок, с системой линз и зеркал, светочувствительная матрица, лампа с холодным катодом (если это CCD-сканер) и плата инвертора. К сканирующей каретке жестко закреплен зубчатый протяжный ремень, который приводит в движение шаговый двигатель аппарата.

Рис. 6.13 - Место крепления ремня к сканирующей каретке

Рис. 6.14 - Элементы протяжного механизма

 

За плотный контакт ремня с шестеренками отвечает специальная натяжная пружина, которая надевается непосредственно на него. Лафет со сканирующей кареткой перемещается по направляющим салазкам, вдоль корпуса аппарата (рис. 6.14).

 

6.1.9 Блок питания сканера

Рис. 6.15 - Блок питания сканера

 

Домашние или офисные сканеры потребляют не слишком много энергии от сети, поэтому в блоках питания SOHO-аппаратов не найти мощных элементов. Внутренний блок питания рассматриваемого здесь аппарата выдает напряжения 24 Вольт / 0.69 А, 12 Вольт / 0.15 А и 5 Вольт / 1 А. Т.к. для источника света – лампы с холодным катодом, требуется высокое напряжение в несколько киловольт, за ее питание отвечает отдельный блок, в основе которого находится инвертор.

 

 

6.2. Задание.

1. Изучить устройство и принцип работы сканера.

2. Подключить и настроить сканер.

3. Установить программное обеспечения необходимое для работы со сканером.

4. Сканирование двух листов по варианту.

5. Распознать изображение (текст, таблицы, рисунки) и сохранить их в MS Word.

6. Получить оптимальный (небольшой) файл для отправки по сети Internet. В зависимости от количества точек на дюйм (при сканировании).

6.3. Контрольные вопросы:

1. Матрицы сканера двух типов. Достоинства и недостатки.

2. По каким причинам CCD-сканеры оцифровывают оригиналы гораздо качественнее, чем аппараты с контактным сенсором?

3. Почему важна разрядность преобразователя?

4. RGB-фильтр сканера.

5. Блок управления сканера.

6. Виды ламп, используемые в сканерах. Лампа с холодным катодом.

7. Чем отличается оптическое разрешение от механического?

8. Принцип работы АЦП сканера.

9. Интерфейсы сканера.

10. Как осуществляется взаимодействие электронных и механических частей сканера?

6.4. Содержание отчета.

 

1. Название, цель, содержание работы.

2. Задание.

3. Результаты выполнения работы.

4. Письменные ответы на контрольные вопросы.

5. Выводы по работе.

 

6.5. Информационные источники:

1. Энциклопедия аппаратных средств IBM PC, М.Гук.

2. http://f-center.ru/

3. http://www.computermaster.ru/

4. http://my-comp.nm.ru

 

 

Периферийные устройства

Составители: В.А. Атрощенко

Н.Д. Чигликова

М.Н. Педько

Д.С. Щеголев

 

Редакторы: Т.П. Горшкова

А.В. Снагощенко

 

 

 

Подписано в печать Формат 60х84/16

Бумага офсетная Офсетная печать

Печ. л. Изд. №

Усл. печ. л. Тираж экз.

Уч.-изд. л. Заказ №

Цена руб.

 

Кубанский государственный технологический университет

350072, Краснодар, ул. Московская 2, кор. А

Типография КубГТУ: 350058, Краснодар, ул. Старокубанская, 88/4

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.