Сделай Сам Свою Работу на 5

Экспрессивность. Пенентратность.

Ген, имеющийся в генотипе в необходимом для проявления количестве (1 аллель для доминантных признаков и 2 аллеля для рецессивных) может проявляться в виде признака в разной степени у разных организмов (экспрессивность) или вообще не проявляться (пенетрантность). Причины:

модификационная изменчивость (воздействие условий окружающей среды)

комбинативная изменчивость (воздействие других генов генотипа).

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по-разному уменьшает число фасеток вплоть до полного их отсутствия.

Другое определение:

Экспрессивность (генетика) — степень проявления в фенотипе различных особей одного и того же аллеля определённого гена. Количественные показатели экспрессивности измеряются на основе статистических данных.

Экспрессивность гена означает степень выраженности проявлений гена. Как правило, любой геноконтролируемый признак варьирует в своем проявлении. Для наследственных болезней, особенно аутосомно-доминантных, варьирование в степени выраженности каждого симптома заболевания и даже в количестве симптомов заболевания является хорошо установленным фактом из-за того, что каждый больной подвергается клиническому обследованию. В общем виде причиной различной выраженности симптомов наследственного заболевания или варьирующей экспрессивности мутантного гена могут быть как генотипическая среда, т.е. другие гены организма, так и факторы внешней среды. К сожалению, конкретные причины варьирующей экспрессивности мутантных генов остаются неизвестными.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.



194. Основные виды хромосомных аберраций.

Хромосомные аберрации (хромосомные мутации, хромосомные перестройки) — изменения структуры хромосом.

Классифицируют делеции (удаление участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую). Хромосомные перестройки носят, как правило, патологический характер и нередко приводят к гибели организма. Показано значение хромосомных перестроек в видообразовании и эволюции

Делеции (от лат. deletio — уничтожение) — хромосомные перестройки, при которых происходит потеря участка хромосомы. Делеция может быть следствием разрыва хромосомы или результатом неравного кроссинговера. По положению утерянного участка хромосомы делеции классифицируют на внутренние (интерстициальные) и концевые (терминальные).

Инверсия- изменение структуры хромосомы, вызванное поворотом на 180° одного из внутренних её участков.

Дупликация (лат. duplicatio — удвоение) — мутация, нарушающая структуру хромосом, представляет собой удвоение участка хромосомы, содержащего гены. Может произойти в результате ошибки при гомологичной рекомбинации, Ретротранспозиции, или из-за дубликации всех хромосомы.[1] Вторая копия гена часто не подвергается давлению селекции — так, мутация одной из копий гена не несет вреда организму. Следовательно, копии накапливают мутации быстрее, чем гены, существующие в одном экземпляре.

Транслока́ция — тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому.

Отдельно выделяют реципрокные транслокации, при которых происходит взаимный обмен участками между негомологичными хромосомами, и Робертсоновские транслокации, или центрические слияния, при которых происходит слияние акроцентрических хромосом с полной или частичной утратой материала коротких плеч.

Особый вид реципрокных транслокаций представляют собой так называемые робертсоновские транслокации. В этом случае разрывы в двух акроцентрических хромосомах локализуются в области центромер или в непосредственной близости от них. Длинные плечи хромосом сливаются, а короткие теряются. Поскольку короткие плечи акроцентрических хромосом содержат гены рРНК, то их потеря никак не проявляется, так как множественные копии этих генов содержатся также в других акроцентрических хромосомах. Поэтому робертсоновская транслокация функционально является сбалансированной.

Реципрокные транслокации являются сбалансированной хромосомной перестройкой, при их формировании не происходит потери генетического материала.

Определение понятия «ген». Классификация генов. Современное состояние теории гена.

Ген – участок ДНК, с которого копируется РНК, элементарная структурная и функциональная единица наследственности живых организмов, включающий промотор, транскрибируемую последовательность и терминатор. Промотор – небольшой участок гена, к которому присоединяется фермент транскрипции. Кодирующая часть содержит информацию о последовательности нуклеотидов в РНК. Терминатор – сигнальный участок о завершении транскрипции. Термин «ген» был предложен в 1909 году датским ботаников Вильгельмом Йогансеном.

Свойства гена

1. дискретность — не смешиваемость генов;

2. стабильность — способность сохранять структуру;

3. лабильность — способность многократно мутировать;

4. множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм;

5. аллельность — в генотипе диплоидных организмов только две формы гена;

6. специфичность — каждый ген кодирует свой признак;

7. плейотропия — множественный эффект гена;

8. экспрессивность — степень выраженности гена в признаке;

9. пенетрантность — частота проявления гена в фенотипе;

10. амплификация — увеличение количества копий гена

Классификация

1. Структурные гены — гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном (гены, кодирующие необходимые для клетки белки-ферменты или структурные элементы).

2. Функциональные гены — гены, которые контролируют и направляют деятельность структурных генов (гены, кодирующие белок, контролирующий транскрипцию структурных генов).

Гены одного метаболического пути объединяются в кластер.

Биологическое значение такой организации генов в том, что обеспечивается быстрое переключение метаболических путей и как результат, быстрое приспособление к изменяющимся условиям внешней среды и экономии энергии.

Современное состояние теории гена. В результате исследований элементарных единиц наследственности сложились представления, носящие общее название теории гена. Основные положения этой теории следующие:

1. Ген – участок молекулы ДНК, имеющей определенную последовательность нуклеотидов. Представляет собой сложную функциональную единицу наследственной информации, состоящую из различных функциональных сегментов.

2. Разные гены имеют разный качественный и количественный состав нуклеотидов.

3. Каждый ген имеет определенное место (локус) в хромосоме.

4. Гены способны к рекомбинации (в процессе кроссинговера) и мутации, что обеспечивает изменчивость.

5. В хромосоме есть гены мРНК (структурные гены), гены рРНК и гены тРНК.

6. Среди структурных генов есть регуляторные гены, продукты которых регулируют работу других структурных генов.

7. Ген не принимает непосредственного участия в синтезе белков, он является «матрицей» для образования посредников – различных молекул РНК, непосредственно участвующих в синтезе.

8. Количество генов может удваиваться в процессе репликации, а затем распределяться в дочерние клетки в результате митоза или мейоза.

9. Ген может существовать в виде разных аллелей, определяющих варианты признаков.

10. Определенный структурный ген кодирует синтез одного полипептида. Отдельный белок может обуславливать определенный признак. Этим обусловлены моногенные признаки.

11. Клетка, орган или организм обладают многими сложными признаками, которые слагаются из взаимодействия многих генов – это полигенные признаки.

12. Действие гена строго специфично, т. к. ген может кодировать только одну аминокислотную последовательность и регулирует синтез только одного конкретного полипептида.

13. Некоторые гены обладают плейотропностью действия, определяя развитие сразу нескольких признаков. Например, синдром Марфана.

14. Дозированность действия гена заключается в зависимости интенсивности проявления признака (экспрессивность) от количества определенного аллеля. Например, многие заболевания в гетерозиготном состоянии проявляются слабее, чем в гомозиготном.

15. На активность гена может оказать влияние как внешняя, так и внутренняя среда.

16. Конститутивные гены – это гены, которые постоянно экспрессируются, т. к. белки, которые они кодируют, необходимы для постоянной клеточной деятельности, обеспечивают синтез белков «домашнего хозяйства» - белки рибосом, цитохромов, ферментов гликолиза, переносчиков ионов и др. Эти гены не требуют специальной регуляции.

17. Неконститутивные гены – это гены обычно неактивные, но экспессируются только тогда, когда белок, который они кодируют, нужен клетке. Эти гены регулируются клеткой или организмом. Эти белки обеспечивают дифференцировку, специфичность структуры и функции каждой клетки.

18. Молекулы ДНК способны к репарации, поэтому не всякие повреждения гена ведут к мутациям.

19. Генотип, будучи дискретным (состоящим из отдельных генов) функционирует как единое целое.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.