Сделай Сам Свою Работу на 5

Учение о биосфере. Ноосфера.


О БИОСФЕРЕ
Одним из выдающихся естествоиспытателей, который посвятил себя изучению процессов, протекающих в биосфере, был академик В. И. Вернадский. Он стал основоположником научного направления, названного им биогеохимией, которое легло в основу современного учения о биосфере.

До появления работ В. И. Вернадского роль живых организмов на Земле представлялась ученым очень скромной. Действительно, казалось бы, какое может быть сравнение последствий их жизнедеятельности с мощью внутренних сил планеты, вздымающих высочайшие горы, разверзающих океанские пучины, перемещающих целые континенты. (8)

В. И. Вернадский доказал, что, как бы слаб ни был каждый организм в отдельности, все они, вместе взятые, на протяжении длительного отрезка времени выступают как мощный геологический фактор, играющий существенную роль в жизни нашей планеты. Геологическая деятельность живых организмов проявляется как следствие следующих их особенностей: они теснейшим образом связаны с окружающей средой и взаимодействуют с ней в процессе обмена веществом и энергией; обмен веществ организмов со средой осуществляется в процессе биологического круговорота; суммарный эффект результатов деятельности организмов проявляется на протяжении очень длительных (сотен миллионов лет) отрезков времени. Таким образом, приоритет в разработке теоретических основ учения о биосфере принадлежит советским ученым.

В. И. Вернадский впервые показал, что химическое состояние наружной коры нашей планеты всецело находится под влиянием жизни и определяется живыми организмами, с деятельностью которых связан великий планетарный процесс – миграция химических элементов в биосфере. Эволюция видов, отмечал ученый, приводящая к созданию форм жизни, устойчива в биосфере и должна идти в направлении увеличения биогенной миграции атомов.

Биосфера представляет собой сложнейшую планетарную оболочку жизни, населенную организмами, составляющими в совокупности живое вещество. Это самая крупная (глобальная) экосистема Земли – область системного взаимодействия живого и косного вещества на планете. Совокупная деятельность живых организмов в биосфере проявляется как геохимический фактор планетарного масштаба.



Вещественный состав биосферы также разнообразен. В. И. Вернадский включает в него семь глубоко разнородных, но геологически не случайных частей:

· живое вещество;

· биогенное вещество – рождаемое и перерабатываемое живыми организмами (горючие ископаемые, известняки и т. д.);

· косное вещество, образуемое без участия живых организмов (твердое, жидкое и газообразное);

· биокосное вещество – косное вещество, преобразованное живыми организмами (вода, почва, кора выветривания, илы);

· вещество радиоактивного распада (элементы и изотопы уранового, ториевого и актиноуранового ряда);

· рассеянные атомы земного вещества и космических излучений;

· вещество космического происхождения в форме метеоритов, космической пыли и др.

Возникновение жизни и биосферы представляют собой проблему современного естествознания. Постепенное развитие живого вещества в пределах биосферы, к переходу ее в ноосферу (от греческого "ноос" — разум). Под ноосферой понимают сферу взаимодействия природы и общества.

Ноосфера ("ноос" — по-гречески означает разум, дух.) — новое эмоциональное состояние биосферы, при котором разумная деятельность человека становится решающим фактором ее развития. Для ноосферы характерно взаимодействие человека и природы: связь законов природы с законами мышления и социально-экономическими законами.

Иногда можно услышать мнение, будто бы введенное Вернадским понятие ноосферы не содержит в себе чего-либо нового и исчерпывается учением о географической среде обитания человечества. Однако вряд ли справедливо подобное отождествление. Категории "географическая среда" и "ноосфера" относятся не к совпадающим вещам, не перекрываются по смыслу. Географическая среда — та оболочка Земли, которая воздействует на условия жизни, производства, культуры, быта людей. Ноосфера — оболочка Земли на которую воздействуют производство, культура, быт людей; сюда относятся и бывшие погребенные слои Земли, изменившиеся под влиянием прошлых антропогенных воздействий, не включенные в нынешнюю географическую среду. Ноосфера отражает планетарное воздействие общественного производства на верхние оболочки Земли; не все эти изменения входят непосредственно в географическую среду. Разрушение озонового слоя органическими растворителями и хладагентами уже идет, по элементом географической среды еще не стало, поскольку пока не влияет на производство, культуру, формы общения людей. Это — факт ноосферы, а не географической среды.

Ноосфера, по Вернадскому, требует качественно иного подхода: глобального управления планетарными процессами по единой разумной воле. Этот путь ведет к идеям социалистического планового общества без частной собственности, без войн.

 

5.Вирусы состоят из следующих основных компонентов:

 

1. Сердцевина - генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса.

 

2. Белковая оболочка, которую называют капсидом (от латинского капса - ящик). Она часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

 

3. Дополнительная липопротеидная оболочка. Она образована из плазматической мембраны клетки-хозяина и встречается только у сравнительно больших вирусов (грипп, герпес).

 

Капсид и дополнительная оболочка несут защитные функции, как бы оберегая нуклеиновую кислоту. Кроме того, они способствуют проникновению вируса в клетку. Полностью сформированный вирус называется вирионом.

 

Значение вирусов для медицины

Вирусы являются возбудителями многих опасных заболеваний человека, животных и растений. В то же время, вирусы – возбудители заболеваний у нежелательных для человека организмов («враги наших врагов»). Они передаются при непосредственном физическом контакте, воздушно-капельным, половым путем и другими способами. Вирусы могут также переноситься и другими организмами (переносчиками): так вирус бешенства переносится собакой или летучей мышью.

Более десяти групп вирусов патогенны для человека. Среди них имеются как ДНК-вирусы (вирус оспы, группа герпеса, аденовирусы (заболевания дыхательных путей и глаз), паповавирусы (бородавки), гепаднавирусы (гепатит В)), так и РНК-вирусы (пикорнавирусы (гепатит А, полиомиелит, ОРЗ), миксовирусы (грипп, корь, свинка), арбовирусы (энцефалит, желтая лихорадка)). К вирусным заболеваниям относится и обнаруженный в 1981 году вирус иммунодефицита человека, вызывающий СПИД.

Из-за высокой мутабельности лечение вирусных заболеваний довольно сложно. Гораздо успешнее применять вакцинацию, заключающуюся во введении аттенуированных (ослабленных) микроорганизмов или умеренных (близкородственных, но не патогенных) штаммов. В 1796 году Эдуард Дженнер изобрел оспопрививание (сейчас вирус оспы остался только в нескольких научных лабораториях), а в 1885 году Луи Пастер сделал первую прививку от бешенства, также практикуют пассивную иммунизацию, то есть введение готовых антител из крови животных. Борьба с вирусными заболеваниями человека и животных ведется также с использованием неспецифических препаратов (например, интерферона), специфических сывороток и препаратов, подавляющих репродукцию вирусов.

Попытки использовать вирусы на пользу человечеству довольно немногочисленны. Так, в середине ХХ века вирус кроличьего миксоматоза использовали в Австралии, чтобы уменьшить поголовье этих чрезвычайно расплодившихся животных.

Вирусы широко используются как объекты молекулярно-генетических исследований. В генной инженерии вирусы применяются для переноса генетического материала.

Благодаря успехам генетики в будущем, возможно, искусственные вирусы смогут уничтожать больные клетки, не затрагивая при этом здоровые, или излечивать их, добавляя необходимый ген.

Некоторые вирусы могут нарушать нормальное функционирование генетического аппарата клетки хозяина, что приводит к развитию онкологических заболеваний.

 

10. В составе клеток всех живых организмов широкое распространение имеют углеводы. Углеводами называют органические соединения, состоящие из углерода, водорода и кислорода. В большинстве углеводов водород и кислород находятся, как правило, в тех же соотношениях, что и в воде (отсюда их название - углеводы). Общая формула таких углеводов Cn(H2O)m. Примером может служить один из самых распространенных углеводов - глюкоза, элементный состав которой С6Н12О6 (рис. 2).

 

А. Биологические функции углеводов

 

Полисахариды, прежде всего крахмал и некоторые дисахариды, являются важными (хотя и не жизненно необходимыми) компонентами питания. В кишечнике они расщепляются до моносахаридов, которые затем всасываются слизистой кишечника. Транспортной формой углеводов в крови позвоночных является глюкоза. Глюкоза поступает в клетки, где используется в качестве клеточного "топлива" (гликолиз) или превращается в другие метаболиты. Гликоген откладывается в некоторых органах (печень, мышцы) в качестве резервного полисахарида. Полисахариды служат строительным материалом для многих организмов. Так, в клеточных стенках бактерий в качестве стабилизирующего структурного компонента присутствует муреин. В растениях эту функцию выполняют целлюлоза и другие полисахариды. Олигомерные и полимерные углеводы часто встречаются в ковалентно связанном виде с липидами (гликолипиды) или белками (гликопротеины), входящими в состав клеточных мембран. Растворимые гликопротеины присутствуют в плазме крови, а также входят в состав протеогликанов, которые являются важными структурными компонентами межклеточного матрикса.

15.

Эукариотические клетки значительно разнообразнее по размеру и структуре, чем прокариотические. Только в организме человека имеются по крайней мере 200 различных типов клеток. Поэтому на схеме структура животной клетки представлена в предельно упрощенном виде.

Эукариотическая клетка организована системой мембран. Снаружи она ограничена плазматической мембраной. Внутренний объем клетки заполнен цитоплазмой, содержащей многочисленные растворимые компоненты. Цитоплазма разделена на хорошо различимые , окруженные внутриклеточными мембранами отделы, называемыми клеточными органеллами.

Самой крупной органеллой является ядро клетки (см. рис. 211), его можно легко видеть в световой микроскоп. Внешняя мембрана ядра связана с мембранами эндоплазматической сети [эндоплазматический ретикулум (ER)], представляющей собой замкнутую систему связанных друг с другом канальцами уплощенных мешочков, составляющую единое целое с перинуклеарным пространством. Другая ограниченная мембранами органелла, также представляющая собой систему мембран, — аппарат Гольджи (или комплекс Гольджи) [на схеме эта система напоминает сложенные в стопку листы). Экзосомы и эндосомы — пузыреобразные органеллы (везикулы), участвующие в процессе обмена веществ между клеткой и ее окружением. Вероятно, наиболее важными в клеточном метаболизме являются митохондрии, представляющие собой органеллы, по размерам приближающиеся к бактериям. Лизосомы и пероксисомы — маленькие глобулярные органеллы, предназначенные для выполнения специфических функций. В клетке имеется белковая нитевидная структура, напоминающая строительные леса (так называемый цитоскелет).

Помимо этих органелл в клетках растений (см. с. 48) имеются хлоропласты (места фотосинтеза), вакуоли, выполняющие структурные функции и являющиеся хранилищами, а также прочная клеточная стенка, построенная из целлюлозы и других полисахаридов.

На схеме для гепатоцитов (клеток печени) приведены приблизительный объем, который приходится на каждый вид органелл (в % к общему объему клетки, на схеме желтого цвета), и число каждой из органелл на клетку (на схеме голубого цвета); эти данные могут значительно различаться для разных типов клеток. Органеллы и другие клеточные структуры более детально описаны в следующих разделах.

20.

 

Строение митохондрий

 

Митохондрии выделяют из клеток в виде чистой фракции с помощью гомогенизатора и ультрацентрифуги, как описано в статье. После этого их можно исследовать в электронном микроскопе, используя для этого различные методики, например изготовление срезов или негативный контраст,...

 

Каждая митохондрия окружена оболочкой, состоящей из двух мембран. Наружную мембрану отделяет от внутренней небольшое расстояние — внутримембранное пространство. Внутренняя мембрана образует многочисленные гребневидные складки, так называемые кристы. Кристы существенно увеличивают поверхность внутренней мембраны, обеспечивая место для размещения компонентов дыхательной цепи. Через внутреннюю митохондри-альную мембрану осуществляется активный транспорт АДФ и АТФ. Метод негативного контрастирования, при котором окрашенными оказываются не сами структуры, а пространство вокруг них, позволил выяоить присутствие особых «элементарных частиц» на той стороне внутренней митохондриальной мембраны, которая обращена к матриксу. Каждая такая частица состоит из головки, ножки и основания.

 

Хотя микрофотографии свидетельствуют, казалось бы, о том, что элементарные частицы выступают из мембраны в матрикс, считается, что это артефакт, обусловленный самой процедурой приготовления препарата, и что в действительности они полностью погружены в мембрану. Головки частиц ответственны за синтез АТФ; в них находится фермент АТФаза, обеспечивающий сопряжение фосфорилирования АДФ с реакциями в дыхательной цепи. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты самой дыхательной цепи. В митохондриальном матриксе содержится большая часть ферментов, участвующих в цикле Кребса, и протекает окисление жирных кислот. Здесь же находятся митохондриальные ДНК, РНК и 70S-рибосомы.

 

Основная функция митохондрий - синтез молекул АТФ. Это своего рода энергетическая станция клетки, которая за счёт окисления различных органических соединений высвобождает энергию за счёт их распада.

 

Главным источником энергии, т.е. соединением, используемым для распада, является пировиноградная кислота. Её в свою очередь организм получает из белков, углеводов и жиров. Есть два пути образования энергии, причём митохондрии используют оба. Первый из них связан с окислением пирувата в матриксе. Второй связан уже с кристами органелл и непосредственно завершает процесс энергообразования.

 

25.25.клеточный цикл-это некоторый промежуток времени, различающийся по продолжительности у разных видов клеток.

клеточный цикл состоит из 2х фаз: интерфазы и митоза или клеточного деления.

Интерфаза -это часть клеточного цикла между двумя делениями. В этой фазе клетка живет большую часть жизни. Интерфаза подразделяется на 3 периода: пресинтетический, синтетический и постсинтетический.

пресентетический период(G1) следует не посредственно за митозом, он наиболее продолжителен: от 10 часов до нескольких суток у эукариот. Во время него клетка активно раотает: синтезирует и-РНК, а на ее основе разнообразные белки , увелечение количества клеточных органоидов, образуется АТФ и т.д. В общем клетка растет и выробатывает положенную ей работу.

В Синтеическом периоде (S) синтез и-РНК ибелков продолжается, одновременно идет реплекация, то есть удвоение количества ДНК. По его окончании каждая хромосома становиться удвоеной и состоит из двух хроматид, которые называют сестринскими. родолжительность периода около 2-6 часов.

Постсинтетический период(G2) самый короткий в итерфазе, длится 1-5 часов. В это время клетка готовится к делению: запасае АТФ, синтезирует необходимые для митоза белки, например табулин для микротрубочек веретина деления.

Важно что на всем протяжении интерфазы наследственное вещество представляет собой длинные хроматиновые нити, неразличимые в световой микроскоп, хромосомная организация отсутствует.

30.Жизненный цикл клетки

Закономерные изменения структурно-функциональных характеристик клетки во времени составляют содержание жизненного цикла клетки (клеточного цикла). Клеточный цикл — это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.

Важным компонентом клеточного цикла является митотический (пролиферативный) цикл —комплекс взаимосвязанных и согласованных во времени событий, происходящих в процессе подготовки клетки к делению и на протяжении самого деления. Кроме того, в жизненный цикл включается период выполнения клеткой многоклеточного организма специфических функций, а также периоды покоя. В периоды покоя ближайшая судьба клетки не определена: она может либо начать подготовку к митозу, либо приступить к специализации в определенном функциональном направлении (рис. 2.10).

Продолжительность митотического цикла для большинства клеток составляет от 10 до 50 ч. Длительность цикла регулируется путем изменения продолжительности всех его периодов. У млекопитающих время митоза составляет 1—1,5 ч, 02-периода интерфазы —2—5 ч, S-периода интерфазы — 6—10 ч.

Биологическое значение митотического цикла состоит в том, что он обеспечивает преемственность хромосом в ряду клеточных поколений, образование клеток, равноценных по объему и содержанию наследственной информации. Таким образом, цикл является всеобщим механизмом воспроизведения клеточной организации эукариотического типа в индивидуальном развитии.

Главные события митотического цикла заключаются в редупликации (самоудвоении) наследственного материала материнской клетки и в равномерном распределении этого материала между дочерними клетками. Указанным событиям сопутствуют закономерные изменения химической и морфологической организации хромосом — ядерных структур, в которых сосредоточено более 90% генетического материала эукари-отической клетки (основная часть внеядерной ДНК животной клетки находится в митохондриях).

Хромосомы во взаимодействии с внехромосомными механизмами обеспечивают: а) хранение генетической информации, б) использование этой информации для создания и поддержания клеточной организации, в) регуляцию считывания наследственной информации, г) удвоение (самокопирование) генетического материала, д) передачу его от материнской клетки дочерним. Химическая организация и строение хромосом описаны в разд. 3.5.2.

 

Рис. 2.10. Жизненный цикл клетки многоклеточного организма.

I — митотический цикл; II — переход клетки в дифференцированное состояние; III— гибель клетки:

G1 — пресинтетический период, G2 — постсинтетический (предмитотический) период, М —митоз, S — синтетический период, R1 и R2 — периоды покоя клеточного цикла; 2с —количество ДНК в диплоидном наборе хромосом, 4с —удвоенное количество ДНК

толкования переводы книги фильмы

 

Все объявления

ЯндексДирект

Стать партнёром

Медицинская генетика

Прогрессивное отделение медицинской генетики. Больница Вольфсон, Израиль

www.wolfson-hospital.org.il

Есть противопоказания. Посоветуйтесь с врачом.

 

 

Словарь Толковый

Основные Толковые Словари в одной простой программе. Скачать бесплатно тут!

linglang.ru

 

 

Английский. Легко.Понятно.Просто!

Мультимедиа курс Незубрилкин. Активное запоминание лексики. Туризм+общение.

courseenglish.ru

 

Большая советская энциклопедия

 

Аукционы, объявления, обмен товаров

 

Интерфаза

Перевод

 

Интерфаза

(от лат. inter — между и Фаза)

интеркинез, стадия жизненного цикла клетки между двумя последовательными митотическими делениями (см. Митоз). Обычно различают гетеросинтетическую И., когда клетка растет, дифференцируется, осуществляет свойственные ей функции, и автосинтетическую И., в течение которой происходит подготовка клетки к следующему делению. В зависимости от интенсивности синтеза дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК) автосинтетическую И., в свою очередь, делят на 3 периода: G1 — предсинтетический, или постмитотический, S — синтетический и G2 — предмитотический, или постсинтетический. В G1-периоде осуществляются накопление необходимых для деления клетки энергетических ресурсов, синтез рибонуклеиновой кислоты (См. Рибонуклеиновые кислоты) (РНК), идёт подготовка к удвоению молекул (репликации (См. Репликация)) ДНК; за счёт синтезированного в этот период белка увеличивается масса клетки и образуется ряд ферментов, необходимых для синтеза ДНК в следующем периоде И. В S-периоде происходит синтез ДНК, т. е. осуществляется репликация её молекул. В G2-периоде синтез ДНК закончен, усиливается синтез РНК и белков, видимо, идущих на построение митотического аппарата (См. Митотический аппарат).

В клетках взрослого организма И, продолжается от 10 до 30 часов и больше; в быстроделящихся клетках И. длится несколько минут (например, в яйцах морского ежа на стадиях 2—4 бластомеров — 14 мин.).

Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. В профазе хорошо видны центриоли — образования, находящиеся в клеточном центре и играющие роль в делении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует деление хромосом). Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриоли делает процесс деления хромосом более наглядным. Центриоли делятся и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки.

В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза — метафазе.

В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку — центромеру. Хромосомы своими центромерами прикрепляются у нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

Затем наступает следующая стадия митоза — анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.

Следующая стадия деления клетки — телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.

Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерное для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК.

Весь процесс митоза занимает в среднем 1-2 ч. Продолжительность его несколько различна для разных видов клеток. Зависит он также от условий внешней среды (температуры, светового режима и других показателей).

Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. Все соматические клетки образуются в результате митотического деления, что обеспечивает рост организма. В процессе митоза происходит распределение веществ хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все клетки организма получают одну и ту же генетическую информацию.

Правильное течение митоза может быть нарушено различными внешними воздействиями: высокими дозами радиации, некоторыми химическими веществами. Например, под действием рентгеновых лучей ДНК хромосом может разорваться. Хромосомы в таком случае тоже разрываются. При этом могут возникнуть хромосомы без центромерного района. Такие хромосомы лишены способности двигаться в прометафазе и анафазе. В зависимости от того, в каком месте ядра бесцентромерная хромосома находилась накануне деления,будет складываться ее дальнейшая судьба. Если хромосома была смещена к одному из полюсов клетки, то при формировании дочерних клеток она может целиком включиться в одну из них, т. е. обе сестринские хроматиды окажутся в одном ядре. Если хромосома, лишенная центромерного района, окажется вблизи центральной части клетки, то велика вероятность того, что она не попадет ни в одно из формирующихся ядер, так как в анафазе не сможет последовать к полюсу. В обоих случаях вновь возникшие клетки будут иметь хромосомный набор, отличающийся от набора хромосом в исходной клетке. Некоторые химические соединения, не свойственные живым организмам (спирты, эфиры), нарушают согласованность митотических процессов. Одни хромосомы начинают двигаться быстрее, другие отстают. Отставшие хромосомы могут не включиться в формирующиеся дочерние ядра. Иногда в делящейся клетке образуется не два, а три или четыре полюса, что ведет к возникновению соответственно трех или четырех дочерних клеток. При таком делении нарушается весь слаженный механизм распределения хромосом. Метафазная хромосома, состоящая из двух сестринских хроматид, может взаимодействовать одновременно только с двумя полюсами. Если полюсов больше, то каждая хромосома вынуждена "выбирать", с какими двумя полюсами из трех или четырех ей взаимодействовать. Этот выбор совершается случайно. В результате каждая дочерняя клетка получает не весь набор хромосом, а только его часть. Клетки, получившие неполный набор хромосом, как правило, оказываются нежизнеспособными и погибают. Изучение нарушений митоза, вызванных различными факторами, с одной стороны, помогает лучше понять митотические процессы, с другой - позволяет устанавливать механизмы повреждающего действия этих факторов и, следовательно, создает условия для целенаправленного поиска методов устранения таких нарушений.

Важнейшим компонентом клеточного цикла является митотический (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл — это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

35.35.Размножение – это способность организмов производить себе подобных особей того же вида.Половое размножение.

Половое размножение. Сущность полового размножения в формировании половых клеток (гамет), слиянии мужской половой клетки (сперматозоида) и женской (яйцеклетки) — оплодотворении и развитии нового дочернего организма из оплодотворенной яйцеклетки. Благодаря оплодотворению получение дочернего организма с более разнообразным набором хромосом, значит, с более разнообразными наследственными признаками, вследствие чего он может оказаться более приспособленным к среде обитания. Наличие полового размножения у водорослей, мхов, папоротников, голосеменных и покрытосеменных. Усложнение полового процесса у растений в процессе их эволюции, появление наиболее сложной формы у семенных растени

Оплодотворение – это процесс слияния сперматозоида с яйцеклеткой с последующим слиянием их ядер и образованием диплоидной зиготы. Биологическое значение этого процесса состоит в том, что при слиянии мужских и женских гамет образуется новый организм, несущий признак обоих родительских организмов.

Гаметы гаплоидны, они содержат половинный набор хромосом и образуются в результате мейоза.

Одной из модификаций полового размножения является партеногенез.

Партеногенез – это процесс, при котором женская гамета развивается в новую особь без оплодотворения (встречается у животных (пчёлы) и растений). Преимущество в том, что увеличивается скорость размножения.

У многоклеточных организмов различают наружное оплодотворение (при слиянии гамет вне организма) и внутреннее оплодотворение, происходящее внутри родительского организма. Наружное может осуществляться только в водной среде, поэтому оно наиболее широко встречается у водных организмов (водорослей, кишечнополостных, рыб). Наземным организмам чаще свойственно внутреннее оплодотворение (высшие семенные растения, насекомые, высшие позвоночные животные).

Различают также перекрестное оплодотворение (при слиянии гамет от разных особей) и самооплодотворение (при слиянии мужских и женских гамет, продуцируемых двуполым организмом — гермафродитом, например, у некоторых паразитических червей). Цветковым растениям присуще двойное оплодотворение, при котором один спермий сливается с яйцеклеткой, а второй — с диплоидной центральной клеткой зародышевого мешка. В результате образуются зигота и триплоидная клетка, дающая начало эндосперму — ткани, в клетках которой запасаются питательные вещества, необходимые для развития зародыша.

40.Гаметогенез — это процесс образования половых клеток. Протекает он в половых железах — гонадах (в яичниках у самок и в семенниках у самцов). Гаметогенез в организме женской особи сводится к образованию женских половых клеток (яйцеклеток) и носит название овогенеза. У особей мужского пола возникают мужские половые клетки (сперматозоиды), процесс образования которых называется сперматогенезом.

 

Гаметогенез — это последовательный процесс, которых складывается из нескольких стадий — размножения, роста, созревания клеток. В процесс сперматогенеза включается также стадия формирования, которой нет при овогенезе.

 

Стадии гаметогенеза

 

1. Стадия размножения. Клетки, из которых в последующем образуются мужские и женские гаметы, называются сперматогониями и овогониями соответственно. Они несут диплоидный набор хромосом 2n2c. На этой стадии первичные половые клетки многократно делятся митозом, в результате чего их количество существенно возрастает. Сперматогонии размножаются в течение всего репродуктивного периода в мужском организме. Размножение овогоний происходит главным образом в эмбриональном периоде. У человека в яичниках женского организма процесс размножения овогоний наиболее интенсивно протекает между 2 и 5 месяцами внутриутробного развития.

 

К концу 7 месяца большая часть овоцитов переходит в профазу I мейоза.

 

Если в одинарном гаплоидном наборе количество хромосом обозначить как n, а количество ДНК — как c, то генетическая формула клеток в стадии размножения соответствует 2n2c до синтетического периода митоза (когда происходит репликация ДНК) и 2n4c после него.

 

2. Стадия роста. Kлетки увеличиваются в размерах и превращаются в сперматоциты и овоциты I порядка (последние достигают особенно больших размеров в связи с накоплением питательных веществ в виде желтка и белковых гранул). Эта стадия соответствует интерфазе I мейоза. Важное событие этого периода — репликация молекул ДНК при неизменном количестве хромосом. Они приобретают двунитчатую структуру: генетическая формула клеток в этот период выглядит как 2n4c.

 

3. Стадия созревания. Происходят два последовательных деления — редукционное (мейоз I) и эквационное (мейоз II), которые вместе составляют мейоз. После первого деления (мейоза I) образуются сперматоциты и овоциты II порядка (с генетической формулой n2c), после второго деления (мейоза II) — сперматиды и зрелые яйцеклетки (с формулой nc) с тремя редукционными тельцами, которые погибают и в процессе размножения не участвуют. Так сохраняется максимальное количество желтка в яйцеклетках. Таким образом, в результате стадии созревания один сперматоцит I порядка (с формулой 2n4c) дает четыре сперматиды (с формулой nc), а один овоцит I порядка (с формулой 2n4c) образует одну зрелую яйцеклетку (с формулой nc) и три редукционных тельца. Отмеченные выше различия в ходе овогенеза и сперматогенеза имеют определенный биологический смысл, связанный с разным функциональным назначением мужских и женских гамет (помимо переноса генетической информации). Накопление в цитоплазме яйцеклетки большого количества запасных питательных веществ необходимо, так как на этой «базе» осуществляется развитие дочернего организма из оплодотворенного яйца. Неравномерное клеточное деление при овогенезе и обеспечивает формирование крупной яйцеклетки. Функция же сперматозоидов заключается в отыскании яйцеклетки, проникновении в нее и доставке своего хромосомного набора. Их существование кратковременно, а поэтому нет необходимости в запасании большого количества веществ в цитоплазме. А поскольку сперматозоиды в массе гибнут в процессе поиска яйцеклетки, их образуется огромное количество.

 

Центральное событие в процессе гаметогенеза — редукция диплоидного набора хромосом (в ходе мейоза) и формирование гаплоидных гамет.

 

4. Стадия формирования, или спермиогенеза (только при сперматогенезе). В результате этого процесса каждая незрелая сперматида превращается в зрелый сперматозоид (с формулой nc), приобретая все структуры, ему свойственные. Ядро сперматиды уплотняется, происходит сверхспирализация хромосом, которые становятся функционально инертными. Комплекс Гольджи перемещается к одному из полюсов ядра, формируя акросому. К другому полюсу ядра устремляются центриоли, причем одна из них принимает участие в формировании жгутика. Вокруг жгутика спирально закручивается одна митохондрия. Почти вся цитоплазма сперматиды отторгается, поэтому головка сперматозоида ее почти не содержит.

45. Независимое наследование (третий закон Менделя). Для дигибридного скрещивания Мендель использовал гомозиготные растения гороха, различающиеся одновременно по двум парам признаков. Одно из скрещиваемых растений имело желтые гладкие семена, другое — зеленые морщинистые

Рис 3.3. Дигибридное скрещивание растений гороха, различающихся по форме и окраске семян.

Все гибриды первого поколения этого скрещивания имели желтые гладкие семена. Следовательно, доминирующими оказались желтая окраска семян над зеленой и гладкая форма над морщинистой. Обозначим аллели желтой окраски А, зеленой — а, гладкой формы— В, морщинистой— b. Гены, определяющие развитие разных пар признаков, называются неаллельпыми и обозначаются разными буквами латинского алфавита. Родительские растения в этом случае имеют генотипы АА ВВ и aabb, а генотип гибридов F1 —АаВb ,т. е. является дигетерозиготным.

Во втором поколении после самоопыления гибридов F1 в соответствии с законом расщепления вновь появились морщинистые и зеленые семена. При этом наблюдались следующие сочетания признаков: 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых семян. Это соотношение очень близко к соотношению 9:3:3:1.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.