Сделай Сам Свою Работу на 5

Вопрос. Системы культивирования микроорганизмов





Биотехнология.

Вопрос. Методы биотехнологии

В биотехнологии выделяют 2 метода: 1) Селекция; 2) Генная инженерия. Для получения высокоактивных продуктов используют методы селекции. С помощью селекции получены промышленные штаммы микроорганизмов, синтетическая активность которых превышает активность исходных штаммов в десятки и сотни раз.

Селекция

Селекция - направленный отбор мутантов (организмов, наследственность которых претерпела скачкообразное изменение). Генеральный путь селекции - переход от простого отбора продуцентов к сознательному конструированию их геномов. На каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные клоны. Применяется ступенчатый отбор: на каждом из этапов из популяции микроорганизмов отбираются наиболее высокоэффективные клоны. Ограниченность метода селекции, основанного на спонтанных мутациях, связана с их низкой частотой, что значительно затрудняет интенсификацию процесса. К значительному ускорению селекции ведет индуцированный мутагенез - резкое увеличение частоты мутаций биообъекта при искусственном повреждении генома. Мутагенным действием обладают ультрафиолетовое, рентгеновское или у-излучение, некоторые химические соединения, вызывающие изменения первичной структуры ДНК. К числу наиболее известных и используемых мутагенов относятся азотистая кислота, алкилирующие агенты и т.д.



Проводят тотальную проверку (скрининг) полученных клонов. Отобрав наиболее продуктивные клоны, повторяют обработку тем же или другим мутагеном, вновь отбирают наиболее продуктивный вариант и т.д., т.е. речь идет о ступенчатом отборе по интересующему признаку.

Трудоемкость - основной недостаток метода индуцированного мутагенеза и последующего ступенчатого отбора. Недостатком метода является также отсутствие сведений о характере мутаций, исследователь проводит отбор по конечному результату.

Генетическая инженерия

Генетическая инженерия – направленная модификация биообъектов в результате введения искусственно созданных генетических программ. Уровни генетической инженерии:

1) генная – прямое манипулирование рекомбинантными ДНК, включающими отдельные гены;



2) хромосомная – манипулирование с группами генов или отдельными хромосомами;

3) геномная (клеточная) – перенос всего или большей части генетического материала от одной клетки к другой (клеточная инженерия). В современном понимании генетическая инженерия включает технологию рекомбинантных ДНК.

Работа в области генетической инженерии включает 4 этапа: 1) получение нужного гена; 2) встраивание его в вектор, способный к репликации; 3) введение гена с помощью вектора в организм; 4) питание и селекция клеток, которые приобрели желаемый ген.

Генетическая инженерия высших растений осуществляется на клеточном, тканевом и организменном уровне.

Основой клеточной инженерии является гибридизация соматических клеток – слияние неполовых клеток с образованием единого целого. Слияние клеток может быть полным или с введением их отдельных частей (митохондрий, хлоропластов и т.д.).

 

Вопрос. Способы культивирования микроорганизмов

Биотехнологические процессы воспроизводства микроорганизмов могут быть основаны на периодическом или непрерывном культивировании.

Биореактор, ферментер или ферментатор - это закрытая или открыта емкость, в которой при определенных условиях (давление, температура, концентрация сухих веществ, рН среды и т.д.) протекает на клеточном или молекулярном уровне контролируемая реакция, осуществляемая с помощью микроорганизмов.

Периодический процесс включает: а) стерилизацию сред, биореакторов и вспомогательного оборудования; б) загрузку аппарата питательной средой; в) внесение посевного материала (клеток, спор); г) рост культуры, который может совпадать во времени со следующим этапом или предшествовать ему; д) синтез целевого продукта; е) отделение и очистку готового продукта. Речь идет о временной последовательности этапов, по окончании последнего этапа проводится мойка биореактора и его подготовка к новому циклу.



Этап роста культуры включает несколько фаз: а) лаг-фазу - сравнительно медленный рост внесенной культуры, осваивающей новую среду обитания в объеме биореактора; б) экспоненциальную фазу - бурное деление клеток, сбалансированный рост культуры; в) фазу замедленного роста, связанного с исчерпанием питательных субстратов и накоплением токсических продуктов метаболизма; г) стационарную фазу - прирост клеток равен их убыли; д) фазу отмирания - постепенное снижение числа жизнеспособных клеток.

Биотехнологически ценные продукты синтезируются в экспоненциальную фазу (нуклеотиды, многие ферменты, витамины - так называемые первичные метаболиты) или в стационарную фазу роста (антибиотики, красящие вещества и т.д. — так называемые вторичные метаболиты или идиолиты).

Широко применяют периодическое культивирование с подпиткой: помимо внесения питательного субстрата в реактор до введения в него биообъекта, в процессе культивирования в аппарат добавляют питательные вещества через определенные промежутки времени порциями или непрерывно «по каплям». Иногда дополнительно вносят биообъект.

Существует также отьемнодоливочное культивирование, когда часть объема из биореактора время от времени изымается при добавлении эквивалентною объема среды. Это приводит к регулярному омолаживанию культуры и к задержке ее перехода к фазе отмирания. Такой режим культивирования в значительной мере уподобляется непрерывному процессу, поэтому называется также полунепрерывным культивированием.

В непрерывных процессах биообъект постоянно поддерживается в экспоненциальной фазе роста. Обеспечивается непрерывный приток свежей питательной среды в биореактор и отток из него культуральной жидкости, содержащей клетки и продукты их жизнедеятельности. Фундаментальным принципом непрерывных процессов служит равновесие между приростом биомассы за счет деления клеток и их убылью в результате разбавления свежей средой. Различают хемостатный и турбидостатный режимы непрерывного культивирования.

Глубинный метод культивирования продуцентов ферментов

Глубинный метод культивирования заключается в выращивании микроорганизмов в жидкой питательной среде. Он технически более совершенен, чем поверхностный, так как легко поддается механизации и автоматизации.

Весь процесс должен проводиться в строго асептических условиях, что с одной стороны, является преимуществом метода, а с другой - составляет наибольшую техническую трудность, т.к. нарушение асептики часто приводит к прекращению образования фермента.

Поверхностный метод культивирования продуцентов ферментов

Культура растет на поверхности твердой увлажненной питательной среды. Мицелий полностью обволакивает и прочно скрепляет твердые частицы, клетки получают питание за счет содержащихся в этих средах веществ и используют для дыхания кислород воздуха, поэтому для их нормального обеспечения кислородом приходится применять рыхлые по своей структуре среды с небольшой высотой слоя.

Недостатком метода является необходимость больших площадей для выращивания

Главное преимущество поверхностного метода - более высокая конечная концентрация фермента на единицу массы среды. Поверхностные культуры можно быстро и легко высушить, их легко перевести в товарную форму и транспортировать. Меньше потребность электроэнергии по сравнению с глубинным методом.

 

вопрос. Системы культивирования микроорганизмов

Культивирование микроорганизмов может осуществляться в открытой или закрытой системе.

Система называется закрытой, если ни одна составная часть этой системы после начала процесса в биореакторе не вводится и не выводится. В периодическом процессе в ферментер сначала подают все питательные вещества, водную фазу и посевной материал. Процесс идет в соответствии с кривой роста микроорганизмов с заключительным замиранием реакции, обусловленным недостатком субстрата, накоплением токсических метаболитов, неблагоприятным изменением физико-химических условий окружающей среды (рН, температура, парциальное давление кислорода, вязкость), гибелью и лизисом микроорганизмов. Во время культивирования все параметры непрерывно изменяются.

Развитие управляемых периодических процессов привело к созданию объемно-доливочной системы: в процессе культивирования главные компоненты среды добавляют дробно, чем исключают субстратное ингибирование. Никакие жидкие компоненты из среды не отводят.

Открытые системы работают в непрерывном потоке. В процессе реакции часть отработанной питательной среды из биореактора удаляют и добавляют новую, что обеспечивает непрерывность процесса. В единицу времени субстрата вводят не больше, чем может переработать культура. Проводят непрерывное культивирование по крайней мере с одной лимитирующей рост концентрацией вещества. Регулирование осуществляют поддержанием концентрации биомассы или продукта на постоянном уровне путем изменения концентрации субстрата (турбидостат) или применения строго лимитированной концентрации питательных веществ с соответствующим изменением концентрации клеток или продукта (хемостат).

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.