Сделай Сам Свою Работу на 5

Сущность явления наклепа и его влияние на эксплуатационные свойства металла.





КОНТРОЛЬНАЯ РАБОТА

по дисциплине

 

«Металловедение (включая сварку)»

Вариант № 13

 

 

Выполнил
студент Ревельский С.В.
Гр. 1042 – 03С
Проверил
Преподаватель Суханов Л.А.

 

Псков

 

Охарактеризуйте параметры процесса кристаллизации, их влияние на величину зерна кристаллизующего материала?

Кристаллизация – фазовый переход вещества из состояния охлажденной (перенасыщенной) маточной среды в кристаллическое соединение с меньшей энергией, избыточная энергия выделяется при кристаллизации в виде скрытой теплоты. Часть этой теплоты может превращаться в механическую работу. В частности, кристаллы солей, образующиеся в порах бетонных плотин в морской воде, вызывают разрушение бетона.

Еще в 1878 г. Д.К.Чернов, изучая структуру литой стали, указал, что процесс кристаллизации состоит из двух элементарных процессов. Первый процесс заключается в зарождении мельчайших частиц кристаллов, которые Чернов называл «зачатками», а теперь их называют зародышами, или центрами кристаллизации. Второй процесс состоит в росте кристаллов из этих центров.

Процесс кристаллизации схематично представлен на рис.1. Здесь на площади, ограниченной квадратами, показаны последовательные этапы зарождения из атомов первичных центров кристаллизации, их роста и возникновения новых зародышей, дальнейшего роста кристаллов до соприкосновения их граней и окончания процесса кристаллизации. В результате образуется структура зерен кристаллов с неправильной геометрической формой – кристаллы.



 

 

Рис.1. Схема процесса кристаллизации.

Величина зерен зависит от количества зародышей кристаллизации и скорости их роста. Если скорость охлаждения мала, то возникает небольшое число зародышей и в конце кристаллизации образуются крупные зерна. При большей скорости охлаждения количество зерен возрастает, но они становятся мельче. Это можно наблюдать на практике – в тонких сечениях литых деталей, где структура стали мелкозернистая, так как происходит быстрое охлаждение. Чтобы сделать зерно мелким, в металл вводят специальные вещества – модификаторы. Процесс искусственного регулирования величины зерен получил название модифицирования.



Процесс образования кристаллов носит дендритный (древовидный) характер, на что впервые обратил внимание Д.К.Чернов. Сущность его состоит в том, что после образования зародышей рост их ведет по направлениям металлической решетки, где имеется меньшая плотность упаковки атомов. Поэтому образуются оси 1 первого порядка (рис.2), затем от них под определенными углами начинаю формироваться оси 2 второго порядка, от них растут оси 3 третьего порядка и т.д. В результате заполняется всё пространство и образуется структура (дендрит), внешне напоминающая строение дерева.

Рис.2. Дендритная кристаллизация

Если условия кристаллизации благоприятны, то могут возникнуть огромные дендриты, достигающие в длину несколько десятков сантиметров. Нормальные дендриты в литых металлах имеют длину равную всего несколько миллиметрам. После горячей механической обработки (ковки, прокатки и прессовки) дендриты вытягиваются вдоль направления течения металла и образуют волокна, которые при наилучшем расположении распределяются вдоль контура изделия. Это оказывает положительное влияние на его механические свойства.

 

Сущность явления наклепа и его влияние на эксплуатационные свойства металла.

Наклеп (нагартовка) –упрочнение металла в результате холодной пластической деформации.

Наклеп снижает пластичность и ударную вязкость, но увеличивает предел пропорциональность, предел текучести и твердость. Наклеп снижает сопротивление материала деформации противоположного знака. При поверхностном наклепе изменяется остаточное напряженное состояние в материале и повышается его усталостная прочность. Наклеп возникает при обработке металлов давлением (прокатка, волочение, ковка, штамповка), резанием, при обкатке роликами, при специальной обработке дробью.



Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа дефектов кристаллического строения (дислокаций, вакансий, межузельных атомов). Повышение плотности дефектов кристаллического строения затрудняет движение отдельных новых дислокаций, а, следовательно, повышает сопротивление деформации и уменьшает пластичность. Наибольшее значение имеет увеличение плотности дислокаций, так как возникающее при этом между ними взаимодействие тормозит дальнейшее их перемещение.

 

 

3. Вычертите диаграмму состояния «Железо – цементит»; укажите структурные составляющие во всех областях диаграммы; опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 3,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF(линию солидус).

При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулойЖР4,3 Л[А2,146,67].Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит+ледебурит, эвтектических — ледебурит и заэвтектических — цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 П[Ф0,036,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 – Ф,

где С – число степеней свободы системы;

К – число компонентов, образующих систему;

1 – число внешних факторов (внешним фактором считаем только температуру, так как давление, за исключением очень высокого, мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф – число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 3,3%С, называется доэвтектическим чугуном. Его структура при комнатной температуре цементит + перлит + ледебурит.

 


а) б)

Рисунок 2: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 3,3% углерода.


 

4. Что такое закалка? Используя диаграмму состояния железо – цементит, укажите температуру нагрева под закалку стали 50 и У12. Опишите превращения, происходящие в сталях при выбранном режиме обработки, получаемую структуру и свойства.

Закалка – термическая обработка, заключающаяся в нагреве сплава выше температуры фазовых превращений, выдержке и последующем быстром охлаждении, обеспечивающая получение неравновесной структуры (кратко фиксация высокотемпературного состояния путем быстрого охлаждения материала).

При комнатной температуре сталь У12 имеет структуру цементита и перлита. До температуры Аc1 сохраняется исходная структура. При температуре Аc1 происходит превращение перлита в аустенит с содержанием углерода 0,8%. При нагреве выше точки Ас1происходит растворение цементита в аустените (в соответствии с линией SE). Увеличение температуры выше точки Асm вызывает рост зерна аустенита.

Критические точки для стали У12: Аc1 = 730°С; Аcm = 820°С.

Для закалки заэвтектоидные стали нагревают на 50-70°С выше точки Ас1.

Таким образом, температура нагрева под закалку составляет 780-800°С. При этих температурах в стали наряду с аустенитом имеется цементит. Поэтому после закалки в структуре заэвтектоидных сталей будет мартенсит с цементитом и небольшое количество остаточного аустенита. Охлаждающая среда при закалке – индустриальное масло. Твердость поверхности после закалки 62-64 HRC.

Критические точки для стали 50: Аc1 = 725°С; Аc3 = 760°С. Для закалки доэвтектоидные стали нагревают на 30-50 °С выше точки Ас3. Температура нагрева под закалку составляет 820-840°С. Охлаждающая среда при закалке – вода. Структура стали 50 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.

Для снятия напряжений и стабилизации структуры после закалки изделия подвергают низкому отпуску.

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.