Сделай Сам Свою Работу на 5

Мероприятия по повышения устойчивости электрических систем





Мероприятия, основанные на улучшении параметров элементов электрической системы.Генераторы. Параметры генераторов оказывают существенное влияние как на статическую, так и на динамическую устойчивость. При использовании на генераторах АРВ с зоной нечувствительности на статическую устойчивость влияет синхронное индуктивное сопротивление xd на динамическую – переходное сопротивление x’d и постоянная инерция Tj. Постоянная инерции существенно влияет на динамическую устойчивость машины. Чем больше Tj (тяжелее машина), тем медленнее изменяется скорость ее ротора под действием избыточного момента. Это увеличивает предельно предельно допустимое время существования аварийного режима, повышая устойчивость системы. Скорость подъема возбудителя значительно влияет на уровень динамической устойчивости. У «быстроотзывчивых» систем возбуждения относительная величина dUB/dt доходит до 6..8, составляя несколько киловольт в секунду. Следовательно, для повышения уровня динамической устойчивости необходимы высокий потолок и большая скорость подъема напряжения. Трансформаторы. Параметры трансформаторов не оказывают существенного влияния на устойчивость электрических систем. Выключатели. Быстрое отключение КЗ имеет решающее значение для улучшения динамической устойчивости. Время отключения КЗ складывается из собственного времени времени выключателя tв и времени действия релейной защиты:



Tотк=tв+tр.з.

Уменьшение времени отключения КЗ увеличивает запас динамической устойчивости.

Линии электропередачи. Параметры линий и их номинальное напряжение оказывают существенное влияние на устойчивость системы. Индуктивное сопротивление линии может быть снижено расщеплением проводов, применяемым с целью уменьшения потерь на корону. Расщепление фазы на три провода (ВЛ 500 кВ) уменьшает реактивное сопротивление линии на 25..30%. Уменьшить индуктивное сопротивлении линии можно, применяя продольную компенсацию реактивного сопротивления ВЛ, которая осуществляется последовательным включением в линию статических конденсаторов. При этом эквиватентное сопротивление линии (без учета распределенности параметров) определяется как



xэкв=x0l-xc.

Чем больше сопротивление конденсатаров xc тем выше степень компенсации параметров линии и, следовательно, выше предел передаваемой мощности электропередачи, в состав которой входит компенсированная линия. Для повышения пропускной способности дальних электропередач применяются промежуточные синхронные компенсаторы и управляемые конденсаторы. В ЭС источниками электрической энергии обычно являются синхронные генераторы, связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями, отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения Устойчивость электрической системы предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д. При анализе Устойчивость электрической системы различают статическую, динамическую и результирующую устойчивость. Статическая устойчивость характеризует Устойчивость электрической системы при малых возмущениях, т. е. таких возмущениях, при которых исследуемая ЭС может рассматриваться как линейная. Изучение статической устойчивости проводится на основе общих методов, разработанных А. М. Ляпуновым для решения задач об устойчивости. В инженерной практике исследование Устойчивость электрической системы иногда проводят упрощённо, ориентируясь на практические критерии устойчивости, определяющие её наличие или отсутствие при некоторых вытекающих из практики допущениях (например, о невозможности т. н. самораскачивания системы, о неизменности частоты электрического тока в системе и др.). При исследовании статической устойчивости применяют цифровые и аналоговые вычислительные машины. Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС. Результирующая устойчивость характеризует Устойчивость электрической системы при нарушении синхронизма части работающих генераторов. Последующее восстановление нормального режима работы происходит при этом без отключения основных элементов ЭС. Расчёты результирующей устойчивости производятся весьма приближённо (из-за их сложности) и имеют целью выявить недопустимые воздействия на оборудование, а также найти комплекс мероприятий, ведущих к ликвидации асинхронного режима работы ЭС.
Статическая Устойчивость электрической системы может быть повышена в основном использованием сильного регулирования, динамическая – форсированием возбуждения генераторов, быстрым отключением аварийных участков, применением специальных устройств для торможения генераторов, отключением части генераторов и части нагрузки. Повышение результирующей устойчивости, обычно рассматриваемое как повышение живучести ЭС, достигается в первую очередь регулированием мощности, вырабатываемой выпавшими из синхронизма генераторами, и автоматическим отключением части потребителей (автоматической разгрузкой ЭС).



 

Линии постоянного тока

Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередач (ЛЭП) переменного тока. Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании переменного тока. В определённых ситуациях ЛЭП постоянного тока могут оказаться полезными даже на коротких расстояниях, несмотря на высокую стоимость оборудования. ЛЭП постоянного тока позволяет транспортировать электроэнергию между несинхронизированными энергосистемами переменного тока, а также помогает увеличить надёжность работы, предотвращая каскадные сбои из-за рассинхронизации фазы между отдельными частями крупной энергосистемы. ЛЭП постоянного тока также позволяет передавать электроэнергию между энергосистемами переменного тока, работающими на разной частоте, например, 50 Гц и 60 Гц. Такой способ передачи повышает стабильность работы энергосистем, так как, в случае необходимости, они могут использовать резервы энергии из несовместимых с ними энергосистем. Современный способ передачи HVDC использует технологию, разработанную в 30-х годах XX века шведской компанией ASEA. Одни из первых систем HVDC были введены в строй в Советском Союзе в 1950 году между Москвой и городом Кашира (была использована немецкая трофейная техника Проект «Эльба»), и островомГотланд и Швецией в 1954 году, с мощностью системы 10-20 МВт. Самая длинная HVDC линия в мире в настоящее время находится в Бразилии и служит для передачи электроэнергии, вырабатываемой двумя ГЭС Если линия электропередачи имеет небольшую длину, при которой можно пренебречь утечкой тока через изоляцию, то ее электрическую схему можно представить в виде последовательного соединения сопротивления линии RЛ, равного суммарному сопротивлению прямого и обратного проводов, и сопротивления нагрузки RН (рис. 1.23).

При анализе работы линии нас интересуют, главным образом, три вопроса: напряжение на нагрузке, величина передаваемой мощности и коэффициент полезного действия передачи. Режимы работы линии удобно рассматривать в виде зависимостей различных величин от тока в линии, равного :

I=U1/(R0+RH)

Падение напряжения в линии ΔU и напряжение на нагрузке U2 определяются следующими выражениями:

Если U1 и RЛ постоянны, то оба выражения представляют собой линейные функции тока (рис. 1.24). В режиме холостого хода (при I = 0) ΔU = 0, а U2 = U1. С ростом тока падение напряжения в линии возрастает, а напряжение на нагрузке уменьшается, и в режиме короткого замыкания (при RН= 0)

Мощность на входе линии линейно зависит от тока: P1 = U1*I. При холостом ходе она равна нулю, а при коротком замыкании вычисляется по формуле

Потери мощности в линии ΔP=I2Rл представляют собой квадратичную функцию тока. Ее график – парабола, проходящая через начало координат.

Мощность, поступающая в нагрузку, равна разности мощности в начале линии и мощности, теряемой в проводах:

Последнее выражение представляет собой уравнение параболы со смещенной вершиной и с обращенными вниз ветвями, проходящими через точки I = 0 и I = IK.

Мощность нагрузки представляет собой довольно сложную зависимость от сопротивления RН:

При RН =0: Р2 = 0; при возрастании RН мощность Р2 сначала возрастает, достигает максимального значения и начинает убывать, стремясь к нулю при RН→∞ (рис. 1.25).

Выясним, при каком сопротивлении нагрузки передаваемая ей мощность максимальна. Для этого продифференцируем функцию (1.15) по RН и приравняем ее к нулю:

То есть мощность, получаемая нагрузкой, максимальна, когда сопротивление нагрузки равно сопротивлению линии.

Ток, протекающий при этом по линии составляет половину тока короткого замыкания, а мощность в конце линии равна:

Коэффициент полезного действия равен отношению мощностей в начале и конце линии:

Из данной формулы следует, что коэффициент полезного действия передачи определяется отношением сопротивлений линии и нагрузки.

При их равенстве, когда нагрузке передается максимальная мощность, η = 0,5 = 50 %. Этот режим, при котором теряется половина передаваемой энергии, на практике, естественно, не пригоден. В реальных линиях при передаче больших мощностей КПД составляет примерно 0,94–0,97. При этом сопротивление нагрузки значительно больше сопротивления линии.

Для анализа режимов электропередачи полезной оказывается еще одна формула. Так как

То есть при одной и той же мощности нагрузки Р2, потери ΔР пропорциональны сопротивлению линии и обратно пропорциональны квадрату напряжения. Для увеличения коэффициента полезного действия передачи необходимо повышение напряжения и снижение электрического сопротивления проводов линии путем увеличения их сечения и применения материалов с меньшим удельным сопротивлением.

Пример 1.6. Линия электропередачи с проводами марки А-120 длиной l = 1000 км питает нагрузку мощностью Р2 = 50 МВт. Каким должно быть напряжение в начале линии, чтобы КПД передачи был не ниже 90 %?

Р е ш е н и е. Сопротивление одного километра провода марки А-120 R0 = 0,27 Ом/км. Суммарное сопротивление прямого и обратного проводов линии составляет RЛ = 2lR0 = 540 Ом.

Принимая η = 0,9, из формулы (1.17) получаем:

Для выполнения условий задачи напряжение в начале линии должно быть не ниже 548 кВ.

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.