Сделай Сам Свою Работу на 5

Схема измерительной установки

1. Для определения параметров ферромагнетика используется петля гистерезиса, которая наблюдается на экране осциллографа при перемагничивании данного ферромагнитного образца внешним переменным магнитным полем.

Схема измерительной установки показана на рис. 19.10. Она содержит следующие элементы: генератор переменного напряжения;
ФО – ферромагнитный образец (сердечник трансформатора); N1 – намагничивающая обмотка; N2 – измерительная обмотка; R и С – резистор и конденсатор RC – цепочки; R1 – резистор для получения напряжения Ux; электронный или цифровой осциллограф (см. Приложение).

 

Рис. 19.10

 

2. В соответствии с показанной на рис. 19.10 схемой на вход U осциллографа подается напряжение Uy, пропорциональное магнитной индукции В поля в исследуемом образце, на вход Х – напряжения Ux пропорциональное напряженности Н поля, намагничивающего образец (внутренний генератор горизонтальной развертки луча осциллографа при этом выключается). За один период Т изменения напряжений Ux
и Uу, характеризующий полный цикл перемагничивания образца, электронный луч на экране осциллографа описывает петлю гистерезиса, повторяя ее в точности за каждый следующий период. Поэтому изображение петли гистерезиса на экране будет неподвижным.

Петля гистерезиса изображается на экране в координатах (х, у), причем

Ux = KхC; Uу = KуY, (19.3)

 

где Х и Y – измеряются в «делениях шкалы» экрана осциллографа;
Kх (В/дел) и Kу (В/дел) – масштабные коэффициенты, значения которых указываются либо около ручек электронного осциллографа, либо на экране цифрового осциллографа.

3. Напряжение Ux, пропорциональное напряженности Н магнитногополя, получают следующим образом. Если образец выполнен в виде однородного замкнутого сердечника, на котором равномерно распределена первичная (намагничивающая) обмотка с числом витков N1, то ток I1 в этой обмотке и напряженность Н создаваемого им поля связаны соотношением

,

 

где l – средняя длина сердечника (ферромагнитного образца).

Последовательно с обмоткой N1 включен резистор R1, на котором создается падение напряжения

 

(19.4)

 

Сопротивление R1 мало. Этим обеспечивается режим перемагничивания, при котором ток I1(t) и напряженность Н(t) несинусоидальны, но синусоидальна магнитная индукция В = Вmsinwt (при синусоидальном напряжении генератора, питающего схему).

Из (19.3) и (19.4) получаем простую формулу для измерения напряженности магнитного поля в образце

 

, (19.5)

где .

4. Напряжение Uу, пропорциональное магнитной индукции В поля в образце, получают следующим образом. Вторичная (измерительная) обмотка, нанесенная на образец и имеющая N2 витков, пронизывается сосредоточенным в ферромагнитном образце магнитным потоком , где S – площадь поперечного сечения образца. В обмотке N2 индуцируется ЭДС

 

,

 

создающая ток I2 и напряжение U2 » –e2 на выходе обмотки (падение напряжения на самой обмотке пренебрежимо мало). Отсюда следует, что и что

. (19.6)

 

Из (19.6) видно, что интегрированием переменного напряже-
ния (в нашем случае – синусоидального, изменяющегося с частотой
w = 2pn = , задаваемой генератором), можно получить сигнал, пропорциональный мгновенному значению В(t) индукции магнитного поля в образце. Эта операция в схеме на рис. 19.6 выполняется «интегрирующей RC-цепочкой», состоящей из резистора R и конденсатора С.

Напряжение U2 создает в RC-цепочке ток I2 и переменный заряд конденсатора, равный , вследствие чего на конденсаторе образуется напряжение

, (19.7)

 

поступающее на вход Y осциллографа (влиянием большого входного сопротивления осциллографа пренебрегаем).

Сопротивление RC-цепочки синусоидальному току с частотой , где Т – период колебаний тока, равно

 

,

 

где t = RC – «постоянная времени» RC – цепочки. При обычно выбираемом значении отношения 30 < < 100 сопротивление Z » R, т. е. практически чисто активное, не создающее заметного сдвига фаз между током I2 и напряжением U2. В этом случае для мгновенных значений тока и напряжения справедлив закон Ома

 

.

 

Это обстоятельство с учетом формул (19.7) и (19.6) позволяет записать для мгновенных значений напряжений U2 и Uу и магнитной индукции В следующую зависимость:

 

. (19.8)

 

Отметим, что увеличение t= RC делает формулу (19.8) более точной, т. е. повышает точность интегрирования, но одновременно приводит к уменьшению напряжения Uу.

Из (19.3) и (19.8) получаем простую формулу для измерения индукции магнитного поля в образце

 

, (19.9)

где .

5. Формулу для определения мощности , расходуемой за один цикл Т = 1/n на перемагничивание ферромагнитного образца, найдем, используя (19.2), (19.5), (19.9), в следующем виде:

 

, (19.10)

 

где ; – площадь петли гистерезиса на экране осциллографа (в координатах х, у), измеряемая в квадратных делениях шкалы экрана осциллографа.

 

Задание к работе

 

1. Соберите схему установки, приведенную на рабочем месте
(рис. 19.10); после проверки схемы преподавателем включите осциллограф и источник питания схемы.

2. Установите максимальное выходное напряжение генератора ГН.

3. Получите на экране осциллографа изображение петли гистерезиса и установите его симметрично относительно оси Х и Y на шкале экрана.

3. Масштабный коэффициент Kу осциллографа выберите таким, чтобы петля гистерезиса занимала всю площадь экрана.

4. Рассчитайте коэффициенты a, b, c, содержащиеся в формулах (19.5), (19.9) и (19.10) соответственно.

5. Измерьте координаты Хс и Yr пересечения петли гистерезиса с осями координат на шкале экрана и по формулам (19.5) и (19.9) вычислите коэрцитивную силу Нс и остаточную индукцию Вr ферромагнитного образца.

6. Измерьте в квадратных делениях шкалы осциллографа площадь петли гистерезиса и по формуле (19.10) вычислите мощность, расходуемую на перемагничивание ферромагнитного образца.

7. Измерьте координаты Хm и Ym петли гистерезиса и по формулам (19.1), (19.5) и (19.9) вычислите соответствующие значения Нm, Вm и m (см. рис. 19.9). Данные занесите в таблицу.

8. Устанавливая поочередно другие значения напряжения генератора ГН, получите соответствующие им петли гистерезиса и выполните измерения и вычисления по п. 7. Данные занесите в таблицу.

9. Используя данные таблицы , постройте график зависимости
В = f(H) – кривую начального намагничивания, а также график зависи-

мости m= f(H).

10. По результатам работы сделайте выводы.

 

Контрольные вопросы

 

1. Что такое магнетики? Назовите их разновидности.

2. Перечислите особенности диамагнетиков и парамагнетиков.

3. Что такое ферромагнетики? Опишите их структуру.

4. Что такое спонтанная намагниченность доменов? В чем ее природа?

5. Опишите процесс начального технического намагничивания ферромагнетиков.

6. Что такое перемагничивание ферромагнетиков и петля гистерезиса?

7. Опишите связь петли гистерезиса с затратами энергии на перемагничивание ферромагнетиков.

8. В чем причина образования остаточной магнитной индукции в ферромагнетиках? Что такое коэрцитивная сила ферромагнетика. Что она характеризует?

9. Охарактеризуйте магнитную проницаемость магнетиков и ее особенность у ферромагнетиков.

10. Опишите мягкие и жесткие ферромагнетики, их применение в технике.

11. Назовите принцип получения в лабораторной установке напряжений, пропорциональных напряженности и магнитной индукции поля в образце.

12. Опишите порядок размагничивания ферромагнетика.

 

Список литературы

 

1. Савельев И.В. Курс общей физики. – М.: Наука, 1978. – Т. 2
(и последующие издания этого курса).

2. Калашников С.Г. Электричество. – М.: Наука, 1977.

3. Епифанов Г.И. Физика твердого тела. – М.: Наука, 1965.

Приложение

 

ЭЛЕКТРОННЫЙ ОСЦИЛЛОГРАФ

 

Краткое описание

 

Осциллограф предназначен для наблюдения и сравнения периодических напряжений. Его показания практически не зависят от мощности сигнала.

а

б

 

Рис. П.1. Электронно-лучевая трубка:

а – конструкция и б – оптическая аналогия трубки

 

На рис. П.1, а изображена конструкция главного элемента осциллографа – электронно-лучевой трубки. Цифрами на рисунке отмечены следующие элементы:

1 – подогреватель; 6 – отклоняющие пластины;

2 – катод; 7 – электронный пучок;

3 – управляющий электрод; 8 – колба трубки;

4 – первый анод; 9 – люминесцирующий экран.

5 – второй анод;

Электронно-лучевая трубка (ЭЛТ) представляет собой стеклянный баллон, из которого выкачан воздух до давления порядка 10–6 мм рт. ст.

Образование и фокусировка электронного пучка осуществляется
с помощью «электронной пушки», состоящей из подогреваемого катода 2, управляющего электрода 3 и двух анодов 4, 5.

Электростатическое поле между катодом и управляющим электродом регулирует число электронов в электронном пучке, а следователь-но, и яркость пятна на экране.

Электростатическое поле между катодом и анодом фокусирует и ускоряет электроны.

Процесс фокусировки электронного пучка с помощью электро-статических полей во многом напоминает действие оптических линз на лучи света (рис. П.1, б).

Отклоняющие пластины 6 представляют собой плоские конден-саторы. Причем одна пара пластин располагается горизонтально и, следовательно, отклоняет электронный пучок вверх-вниз, а вторая пара – вертикально, эта пара отклоняет пучок вправо-влево. Электронный пучок, попадая между ними, испытывает отклонение, зависящее от величины приложенного к пластинам напряжения, причем если напряжение на пластинах отсутствует, то пучок падает в центр экрана.

Для исследования напряжений, изменяющихся во времени, используют обе пары отклоняющих пластин. На горизонтально отклоняющие пластины (вход Y осциллографа) обычно подается исследуемое напряжение, а на вертикально отклоняющие пластины (вход X осциллографа) подается вырабатывающееся в самом осциллографе напряжение, изменяющееся пропорционально времени, – так называемое напряжение развертки. Это напряжение вырабатывает генератор развертки.

 

Генератор развертки

 

Если на вертикально отклоняющие пластины подано переменное напряжение U(t), то световое пятно на экране будет совершать вертикальные колебания. Поскольку обычно эти колебания происходят с большой частотой и люминофор, нанесенный на экран, имеет послесвечение (инерционность), то на экране будет видна неподвижная вертикальная линия. Пусть одновременно напряжение на горизонтально отклоняющих пластинах возрастает по линейному закону U =U0 + kt. Под действием этого напряжения пятно на экране осциллографа будет равномерно перемещаться слева направо. Результирующая траектория луча представит зависимость исследуемого напряжения U(t) от времени.

Если по истечении времени, равного или кратного периоду исследуемого колебания, напряжение на горизонтально отклоняющих пластинах мгновенно падает до первоначального значения U0, то световое пятно мгновенно возвращается в исходное положение. Напряжение U(x) при этом является пилообразным. Повторив развертку с постоянной скоростью, мы увидим на экране второй период изменения величины U(t). Смещая луч от точки А до В вдоль горизонтальной оси с постоянной скоростью, а потом мгновенно возвращая его от В до А и повторяя такую развертку многократно, на экране мы видим неподвижную картину величины U(t) (рис. П.2).

Некоторые осциллографы (например, С1-83) позволяют наблюдать на экране одновременно два сигнала (двухканальная схема подключения). Для этого сигналы первого и второго каналов с помощью специального переключателя поочередно подаются на вертикально отклоняющие пластины.

 

Описание органов управления осциллографом С1–83

 

Схема осциллографа приведена на рис. П.3.

Рис. П.3. Схема осциллографа

1. Органы управления трактом вертикального отклонения:

– переключатели V/дел 1, 2, устанавливающие калиброванные коэффициенты отклонения каналов I и II;

– потенциометры 3, 4, обеспечивающие плавную регулировку коэффициентов отклонения обоих каналов с перекрытием не менее чем
в 2,5 раза в каждом положении переключателей V/дел. Для достижения соответствия масштабной сетке пределов, установленных переключателями 1, 2, необходимо повернуть потенциометры по часовой стреле до предела;

– потенциометры 5, 6, регулирующие положение лучей обоих каналов по вертикали;

7, 8 – гнезда для подачи исследуемых сигналов (канал I, канал II);

9, 10 – переключатели режима работы входов усилителя в положениях:

«~» – на вход усилителя исследуемый сигнал поступает через разделительный конденсатор (закрытый вход);

«~» – на вход усилителя исследуемый сигнал поступает с постоянной составляющей (открытый вход);

«^» – вход усилителя подключен к корпусу;

 

– переключатели режима работы усилителей в положениях:

 

«I» – на экране ЭЛТ наблюдается сигнал канала I;

«I I», «Х-Y» – на экране ЭЛТ наблюдается сигнал канала II;

«I±II» – на экране ЭЛТ наблюдается алгебраическая сумма сигналов каналов I и II;

« ... » – на экране ЭЛТ наблюдаются изображения сигналов обоих каналов, их переключение осуществляется с частотой 100 кГц;

« ®® » – на экране ЭЛТ наблюдаются изображения сигналов обоих каналов, их переключение осуществляется в конце каждого прямого хода развертки;

– переключатели инвертирования сигнала во II канале в положениях:

« » – фаза сигнала не меняется;

« » – фаза сигнала меняется на 180°;

 

– переключатели изменения усиления каналов в 10 раз, совмещенные с ручками 5, 6, в положениях:

 

«х1» – коэффициент отклонения канала соответствует коэффициенту, выставленному переключателем 1 или 2;

«х10» – коэффициент отклонения канала соответствует коэффициенту, выставленному переключателем 1 или 2, умноженному на 10.

 

2. Органы управления синхронизацией:

– потенциометр 11 («Уровень»), выбирающий уровень исследуемого сигнала, при котором происходит запуск развертки;

– переключатель источника синхронизации в положениях:

«Внутр. I» – развертка синхронизируется сигналом первого канала;

«Внутр. I, II» – развертка синхронизируется сигналами обоих каналов (или одного);

«0,5-5 Внеш.» – развертка синхронизируется внешним сигналом амплитудой 0,5-5 В;

«5-50 Внеш.» – развертка синхронизируется внешним сигналом амплитудой 5-50 В;

«X-Y» – вход усилителя Х отключается от генератора развертки и подключается к I каналу усилителя Y, работа генератора развертки прекращается.

3. Органы управления разверткой:

– переключатель 12 («ВРЕМЯ/ДЕЛ»), устанавливающий калиброванный коэффициент развертки, когда ручка плавной регулировки 13 установлена в крайнее правое положение;

– потенциометр 14, обеспечивающий перемещение луча по горизонтали;

– переключатель « х1, х0,2 », связанный с ручкой 14 и увеличивающий скорость развертки в положении « х0,2 » в 5 раз;

– «АВТ» – режим, вырабатывающий пилообразное напряжение независимо от запускающего сигнала;

– «ЖДУЩ» – запуск развертки (осуществляется только при наличии синхронизирующего сигнала).

 



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.