Сделай Сам Свою Работу на 5

Функции системы управления памятью

Чтобы обеспечить эффективный контроль использования памяти, ОС должна выполнять следующие функции:

· отображение адресного пространства процесса на конкретные области физической памяти;

· распределение памяти между конкурирующими процессами;

· контроль доступа к адресным пространствам процессов;

· выгрузка процессов (целиком или частично) во внешнюю память, когда в оперативной памяти недостаточно места;

· учет свободной и занятой памяти.

В следующих разделах лекции рассматривается ряд конкретных схем управления памятью. Каждая схема включает в себя определенную идеологию управления, а также алгоритмы и структуры данных и зависит от архитектурных особенностей используемой системы. Сначала мы рассмотрим, простейшие схемы, а потом доминирующую на сегодня схему виртуальной памяти.

Простейшие схемы управления памятью

Первые ОС применяли очень простые методы управления памятью. Вначале каждый процесс пользователя должен был полностью поместиться в основной памяти, занимать непрерывную область памяти, а система принимала к обслуживанию дополнительные пользовательские процессы до тех пор, пока все они одновременно помещались в основной памяти. Затем появился «простой свопинг» (система по-прежнему размещает каждый процесс в основной памяти целиком, но иногда на основании некоторого критерия целиком сбрасывает образ некоторого процесса из основной памяти во внешнюю и заменяет его в основной памяти образом другого процесса).

Схема с фиксированными разделами

Самым простым способом управления оперативной памятью является ее предварительное (обычно на этапе генерации или в момент загрузки системы) разбиение на несколько разделов фиксированной величины. Поступающие процессы помещаются в тот или иной раздел. При этом происходит условное разбиение физического адресного пространства. Связывание логических и физических адресов процесса происходит на этапе его загрузки в конкретный раздел, иногда – на этапе компиляции.

Каждый раздел может иметь свою очередь процессов, а может существовать и глобальная очередь для всех разделов (см. рис. 6.4).


Рис. 6.4. Схема с фиксированными разделами:
(a) – с общей очередью процессов, (b) – с отдельными очередями процессов

Эта схема была реализована в IBM OS/360 (MFT), DEC RSX-11 и ряде других систем.

Подсистема управления памятью оценивает размер поступившего процесса, выбирает подходящий для него раздел, осуществляет загрузку процесса в этот раздел и настройку адресов.

Очевидный недостаток этой схемы – число одновременно выполняемых процессов ограничено числом разделов.

Другим существенным недостатком является то, что предлагаемая схема сильно страдает от внутренней фрагментации – потери части памяти, выделенной процессу, но не используемой им. Фрагментация возникает потому, что процесс не полностью занимает выделенный ему раздел или потому, что некоторые разделы слишком малы для выполняемых пользовательских программ.

Один процесс в памяти

Частный случай схемы с фиксированными разделами – работа менеджера памяти однозадачной ОС. В памяти размещается один пользовательский процесс. Остается определить, где располагается пользовательская программа по отношению к ОС – в верхней части памяти, в нижней или в средней. Причем часть ОС может быть в ROM (например, BIOS, драйверы устройств). Главный фактор, влияющий на это решение, – расположение вектора прерываний, который обычно локализован в нижней части памяти, поэтому ОС также размещают в нижней. Примером такой организации может служить ОС MS-DOS.

Защита адресного пространства ОС от пользовательской программы может быть организована при помощи одного граничного регистра, содержащего адрес границы ОС.

Оверлейная структура

Так как размер логического адресного пространства процесса может быть больше, чем размер выделенного ему раздела (или больше, чем размер самого большого раздела), иногда используется техника, называемая оверлей (overlay) или организация структуры с перекрытием. Основная идея – держать в памяти только те инструкции программы, которые нужны в данный момент.

Потребность в таком способе загрузки появляется, если логическое адресное пространство системы мало, например 1 Мбайт (MS-DOS) или даже всего 64 Кбайта (PDP-11), а программа относительно велика. На современных 32-разрядных системах, где виртуальное адресное пространство измеряется гигабайтами, проблемы с нехваткой памяти решаются другими способами (см. раздел «Виртуальная память»).


Рис. 6.5. Организация структуры с перекрытием.
Можно поочередно загружать в память ветви A-B, A-C-D и A-C-E программы

Коды ветвей оверлейной структуры программы находятся на диске как абсолютные образы памяти и считываются драйвером оверлеев при необходимости. Для описания оверлейной структуры обычно используется специальный несложный язык (overlay description language). Совокупность файлов исполняемой программы дополняется файлом (обычно с расширением .odl), описывающим дерево вызовов внутри программы. Для примера, приведенного на рис. 6.5, текст этого файла может выглядеть так:

A-(B,C)

C-(D,E)

Синтаксис подобного файла может распознаваться загрузчиком. Привязка к физической памяти происходит в момент очередной загрузки одной из ветвей программы.

Оверлеи могут быть полностью реализованы на пользовательском уровне в системах с простой файловой структурой. ОС при этом лишь делает несколько больше операций ввода-вывода. Типовое решение – порождение линкером специальных команд, которые включают загрузчик каждый раз, когда требуется обращение к одной из перекрывающихся ветвей программы.

Тщательное проектирование оверлейной структуры отнимает много времени и требует знания устройства программы, ее кода, данных и языка описания оверлейной структуры. По этой причине применение оверлеев ограничено компьютерами с небольшим логическим адресным пространством. Как мы увидим в дальнейшем, проблема оверлейных сегментов, контролируемых программистом, отпадает благодаря появлению систем виртуальной памяти.

Заметим, что возможность организации структур с перекрытиями во многом обусловлена свойством локальности, которое позволяет хранить в памяти только ту информацию, которая необходима в конкретный момент вычислений.



©2015- 2017 stydopedia.ru Все материалы защищены законодательством РФ.