Сделай Сам Свою Работу на 5

Абсолютная и относительная погрешности





Допустим, что точная ширина стола – А=384 мм, а мы, измерив ее, получили а=381 мм. Модуль разности между точным значением измеряемой величины и ее приближенным значением называется абсолютной погрешностью . В данном примере абсолютная погрешность 3 мм. Но на практике мы никогда не знаем точного значения измеряемой величины, поэтому не можем точно знать абсолютную погрешность.

Но обычно мы знаем точность измерительных приборов, опыт наблюдателя, производящего измерения и т.д. Это дает возможность составить представление об абсолютной погрешности измерения. Если, например, мы рулеткой измеряем длину комнаты, то нам нетрудно учесть метры и сантиметры, но вряд ли мы сможем учесть миллиметры. Да в этом и нет надобности. Поэтому мы сознательно допускаем ошибку в пределах 1 см. абсолютная погрешность длины комнаты меньше 1 см. Измеряя длину какого-либо отрезка миллиметровой линейкой, мы имеем право утверждать, что погрешность измерения не превышает 1 мм.

Абсолютная погрешность eа приближенного числа а дает возможность установить границы, в которых лежит точное число А:

Абсолютная погрешность не является достаточным показателем качества измерения и не характеризует точность вычислений или измерений. Если известно, что, измерив некоторую длину, мы получили абсолютную погрешность в 1 см, то никаких заключений о том, хорошо или плохо мы измеряли, сделать нельзя. Если мы измеряли длину карандаша в 15 см и ошиблись на 1 см, наше измерение никуда не годится. Если же мы измеряли 20-метровый коридор и ошиблись всего на 1 см, то наше измерение – образец точности. Важна не только сама абсолютная погрешность, но и та доля, которую она составляет от измеренной величины. В первом примере абс. погрешность 1 см составляет 1/15 долю измеряемой величины или 7%, во втором – 1/2000 или 0.05%. Второе измерение значительно лучше.



Относительной погрешностью называют отношение абсолютной погрешности к абсолютному значению приближенной величины:

.

В отличие от абсолютной погрешности, которая обычно есть величина размерная, относительная погрешность всегда есть величина безразмерная. Обычно ее выражают в %.

Пример



При измерении длины в 5 см допущена абсолютная погрешность в 0.1 см. Какова относительная погрешность? (Ответ 2%)

При подсчете числа жителей города, которое оказалось равным 2 000 000, допущена погрешность 100 человек. Какова относительная погрешность? (Ответ 0.005%)

 

Результат всякого измерения выражается числом, лишь приблизительно характеризующим измеряемую величину. Поэтому при вычислениях мы имеем дело с приближенными числами. При записи приближенных чисел принимается, что последняя цифра справа характеризует величину абсолютной погрешности.

Например, если записано 12.45, то это не значит, что величина, характеризуемая этим числом, не содержит тысячных долей. Можно утверждать, что тысячные доли при измерении не учитывались, следовательно, абсолютная погрешность меньше половины единицы последнего разряда: . Аналогично, относительно приближенного числа 1.283, можно сказать, что абсолютная погрешность меньше 0.0005: .

Приближенные числа принято записывать так, чтобы абсолютная погрешность не превышала единицы последнего десятичного разряда. Или, иначе говоря, абсолютная погрешность приближенного числа характеризуется числом десятичных знаков после запятой.

Как же быть, если при тщательном измерении какой-нибудь величины получится, что она содержит целую единицу, 2 десятых, 5 сотых, не содержит тысячных, а десятитысячные не поддаются учету? Если записать 1.25, то в этой записи тысячные не учтены, тогда как на самом деле мы уверены, что их нет. В таком случае принято ставить на их месте 0, – надо писать 1.250. Таким образом, числа 1.25 и 1.250 обозначают не одно и то же. Первое – содержит тысячные; мы только не знаем, сколько именно. Второе – тысячных не содержит, о десятитысячных ничего сказать нельзя.



Сложнее приходится при записи больших приближенных чисел. Пусть число жителей деревни равно 2000 человек, а в городе приблизительно 457 000 жителей. Причем относительно города в тысячах мы уверены, но допускаем погрешность в сотнях и десятках. В первом случае нули в конце числа указывают на отсутствие сотен, десятков и единиц, такие нули мы назовем значащими; во втором случае нули указывают на наше незнание числа сотен, десятков и единиц. Такие нули мы назовем незначащими. При записи приближенного числа, содержащего нули надо дополнительно оговаривать их значимость. Обычно нули – незначащие. Иногда на незначимость нулей можно указывать, записывая число в экспоненциальном виде (457*103).

 

Сравним точность двух приближенных чисел 1362.3 и 2.37. В первом абсолютная погрешность не превосходит 0.1, во втором – 0.01. Поэтому второе число выглядит более точным, чем первое.

Подсчитаем относительную погрешность. Для первого числа ; для второго . Второе число значительно (почти в 100 раз) менее точно, чем первое. Получается это потому, что в первом числе дано 5 верных (значащих) цифр, тогда как во втором – только 3.

Все цифры приближенного числа, в которых мы уверены, будем называть верными (значащими) цифрами. Нули сразу справа после запятой не бывают значащими, они лишь указывают на порядок стоящих правее значащих цифр. Нули в крайних правых позициях числа могут быть как значащими, так и не значащими. Например, каждое из следующих чисел имеет 3 значащие цифры: 283*105, 200*102, 22.5, 0.0811, 2.10, 0.0000458.

Пример

Сколько значащих (верных) цифр в следующих числах:

0.75 (2), 12.050 (5), 1875*105 (4), 0.06*109 (1)

Оценить относительную погрешность следующих приближенных чисел:

0.989 (0.1%),

нули значащие: 21000 (0.005%),

0.000 024 (4%),

0.05 (20%)

 

Нетрудно заметить, что для примерной оценки относительной погрешности числа достаточно подсчитать количество значащих цифр. Для числа, имеющего только одну значащую цифру относительная погрешность около 10%;

с 2-мя значащими цифрами – 1%;

с 3-мя значащими цифрами – 0.1%;

с 4-мя значащими цифрами – 0.01% и т.д.

 

При вычислениях с приближенными числами нас будет интересовать вопрос: как, исходя из данных приближенных чисел, получить ответ с нужной относительной погрешностью.

Часто при этом все исходные данные приходится брать с одной и той же погрешностью, именно с погрешностью наименее точного из данных чисел. Поэтому часто приходится более точное число заменять менее точным – округлять.

округление до десятых 27.136 » 27.1,

округление до целых 32.8 » 33.

Правило округления: Если крайняя левая из отбрасываемых при округлении цифр меньше 5, то последнюю сохраняемую цифру не изменяют; если крайняя левая из отбрасываемых цифр больше 5 или если она равна 5, то последнюю сохраняемую цифру увеличивают на 1.

Пример

округлить до десятых 17.96 (18.0)

округлить до сотых 14.127 (14.13)

округлить, сохранив 3 верные цифры: 83.501 (83.5), 728.21 (728), 0.0168835 (0.01688).

 

 








Не нашли, что искали? Воспользуйтесь поиском по сайту:



©2015 - 2024 stydopedia.ru Все материалы защищены законодательством РФ.